A Notion of a Computational Step
for Partial Combinatory Algebras

1

Nathanael L. Ackerman! and Cameron E. Freer?

! Department of Mathematics
Harvard University
nate@math.harvard.edu
2 Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
freer@math.mit.edu

Abstract. Working within the general formalism of a partial combina-
tory algebra (or PCA), we introduce and develop the notion of a step
algebra, which enables us to work with individual computational steps,
even in very general and abstract computational settings. We show that
every partial applicative structure is the closure of a step algebra ob-
tained by repeated application, and identify conditions under which this
closure yields a PCA.

Keywords: partial combinatory algebra, step algebra, computational
step

1 Introduction

A key feature of a robust notion of computation is having analogous notions of
efficient computations. More precisely, given a definition of objects that are com-
putable (given unlimited resources such as time, space, or entropy), one would
like corresponding definitions of those that are efficiently computable (given
bounds on such resources).

As the notion of computation has been generalized in many directions, the
related notions of efficiency have not always followed. One important generaliza-
tion of computation is that given by partial combinatory algebras. Here our goal
is to provide one such corresponding notion of a single step of a computation,
by introducing step algebras. Step algebras attempt to describe, using a similar
formalism, what it means to carry out one step of a computation; we believe
that they may be useful in the analysis of efficient computation in this general
context, as well as in other applications, as we will describe.

1.1 Partial Combinatory Algebras

The class of partial combinatory algebras (PCAs) provides a fundamental formu-
lation of one notion of abstract computation. PCAs generalize the combinatorial

calculi of Schénfinkel [Sch24] and Curry [Cur29], and have connections to re-
alizability, topos theory, and higher-type computation. For an introduction to
PCAs, see van Oosten [vOO08] or Longley [Lon95].

PCAs are flexible and general enough to support many of the standard op-
erations and techniques of (generalized) computation, and despite the austerity
of their definition, each PCA will contain a realization of every partial com-
putable function. As has been shown over the years, many of the natural models
of computation are PCAs. For example, partial computable functions relative
to any fixed oracle, partial continuous functions N¥ — N as in Kleene’s higher-
type computability, nonstandard models of Peano arithmetic, and certain Scott
domains all form PCAs (see, e.g., [vO08, §1.4]), as do the partial a-recursive
functions for a given admissible ordinal c.

Furthermore, by work of van Oosten [vO06], there is a notion of reducibility
between PCAs extending the notion of Turing reducibility arising from ordinary
computation with oracles. Also, by augmenting PCAs with limiting operations,
Akama [Aka0O4] has shown how they can interpret infinitary A-calculi.

Realizability was initially used as a tool to study concrete models of intu-
itionistic theories. As a result, the use of PCAs has been expanded to give models
of intuitionistic set theory, as in work on realizability toposes (generalizing the
effective topos; see, e.g, [vO08]) and, more recently, in work by Rathjen [Rat06].

In all these facets of computation, PCAs provide a clean and powerful gener-
alization of the notion of computation. However, the elements of a PCA represent
an entire computation, and PCAs generally lack a notion of a single step of a
computation. In this paper we aim to provide one such notion.

1.2 Other Approaches to Abstract Algorithmic Computations

One approach, other than PCAs, to abstract algorithmic computation is the
finite algorithmic procedure of H. Friedman [Fri71]; for details and related ap-
proaches, including its relationship to recursion in higher types, see Fenstad
[Fen80, §0.1]. In such procedures, there is a natural notion of a step provided by
the ordered list of instructions.

Another, more abstract, attempt to capture the notion of computational
step is suggested by Moschovakis’ recursors [Mos01]. In this setting, the result
of an abstract computation is the least fixed point of a continuous operator on
a complete lattice. As this least fixed point can be obtained as the supremum
of iteratively applying this continuous operator to the minimal element of the
lattice, one might consider a computational step to be a single application of
this continuous operator.

Still another approach is that of Gurevich’s abstract state machines [Gur00].
Within this formalism, the notion of a single step of an algorithm has also been
an important concept [BDGO09.

These and other approaches do provide useful analyses of the notion of a
single computation step. Here our goal is analogous but is in the more general
setting of PCAs, where one is never explicitly handed a list of fine-grained com-

putational instructions, and must instead treat each potentially powerful and
long (even nonhalting) subcomputation as a black box.

1.3 Outline of the Extended Abstract

We begin by defining PCAs and recalling their key properties. In the following
section we introduce step algebras, the main notion of this abstract. A PCA
always gives rise to a step algebra (by considering application to be a single
step), but additional hypotheses on a step algebra are needed to ensure that the
closure under repeated application is itself a PCA.

In the most general cases, a step algebra gives us little handle on its closure.
Therefore we consider additional computable operations such as pairing, the use
of registers, and serial application. These operations lead us to conditions under
which a step algebra yields a PCA (by closure under repeated application). On
the other hand, we conjecture that every PCA (up to isomorphism) comes from
a suitable step algebra in this way.

Finally, we briefly discuss potential extensions of this work, including a gen-
eralization of computational complexity to the setting of PCAs, and an analysis
of reversible computations in PCAs.

2 Preliminaries

Before proceeding to step algebras, we briefly recall the definition and key prop-
erties of partial applicative structures and partial combinatory algebras. For
many more details, see [vO08] or [Lon95].

Definition 1. Suppose A is a nonempty set and o : A x A — A is a partial
map. We say that A = (A, o) is a partial applicative structure (PAS). We
write PAS to denote the class of partial applicative structures.

This map o is often called application. When the map o is total, we say that
A is a total PAS. When there is no risk of confusion (e.g., from application
in another PAS), we will write ab to denote a o b. Furthermore, we adopt the
standard convention of association to the left, whereby abc denotes (ab)c (but
not a(bc) in general).

Given an infinite set of variables, the set of terms over a PAS A = (A4,0) is
the least set containing these variables and all elements of A that is closed under
application. For a closed term ¢ (i.e., without variables) and element a € A, we
write ¢} a, and say that term ¢ denotes element a, when a is the result of repeated
reduction of subterms of t. We write t|, and say that ¢ denotes, when there is
some a such that t | a. For closed terms ¢, s, the expression ¢ = s means that
they denote the same value, and ¢t ~ s means that if either ¢ or s denotes, then
t = s. This notation extends to non-closed terms (and means the corresponding
expression of closed terms for every substitution instance).

Definition 2. Let A = (A,0) be a PAS. We say that A is combinatorially com-

plete when for every n € N and any term t(x1,...,T,y1), there is an element
a € A such that for all ay,...,an11 € A, we have aay ---ayl and
aay * - ap41 = t(ah .- -,an+1)-

A partial combinatory algebra (PCA) is a combinatorially complete PAS.
The following lemma is standard.

Lemma 1. Let A = (A, o) be a PAS. Then A is a PCA if and only if there are
elements S, K € A satisfying

o Kab= a,

e Sabl, and

e Sabc ~ ac(bc)

for all a,b,c € A.

Using the S and K combinators, many convenient objects or methods can
be obtained in arbitrary PCAs, including pairing and projection operators, all
natural numbers (via Church numerals), and definition by cases. Note that we
use (-,-) to denote elements of a cartesian product (and not, as in other texts,
for pairing in a PCA or for lambda abstraction).

Furthermore, by combinatory completeness, in every PCA each (ordinary)
partial computable function corresponds to some element, and a wide range of
computational facts about ordinary partial computable functions translate to
arbitrary PCAs, including a form of lambda abstraction and the existence of
fixed point operators (giving a version of the recursion theorem). However, one
key feature that arbitrary PCAs do not admit is a sort of induction whereby one
is able to iterate over all programs in sequence.

2.1 Examples

For concreteness, we present two of the most canonical examples of PCAs, al-
though PCAs admit many more powerful or exotic models of computation, as
described in the introduction.

Ezample 1. Kleene’s first model is K1 = (N,0) where a o b = ¢g4(b), i.e., the
application of the partial computable function with index a to the input natural
number b.

In Ky there is a natural notion of a computational step, provided by, e.g., a
single operation (i.e., overwriting the current cell, making a state transition, and
moving the read/write head) on a Turing machine.

Example 2. Kleene’s second model is Ko = (NV, o) where application a o b in-
volves treating the element a of Baire space as (code for) a partial continuous
map NY — NN, applied to b € NV,

While one may typically think of an element of NN as naturally having a
step-by-step representation (e.g., whereby a real is represented as a sequence of
nested intervals), application itself does not admit an obvious decomposition in
terms of steps, and so even here step algebras may provide additional granularity.

3 Step Algebras

We now proceed to consider a framework for computations where the funda-
mental “steps” are abstract functions. To do so, we define step algebras, the
key notion of this extended abstract. A step algebra is a PAS with certain extra
structure and properties, whose elements are an object paired with a state; as
with PCAs, these elements can be thought of as either data or code. When an
element is treated as code, its state will be irrelevant, but when an element is
treated as data, the state of the data can inform what is done to it.

Specifically, if A = (Ax I, ®) is a step algebra, then for a,b € A we will think
of a®b as the result of applying code a to data b for one time step. An intuition
that does not translate exactly, but is nonetheless useful, is to imagine the PAS as
a “generalized Turing machine”. In this context, the code for a Turing machine
can be thought of as a function telling the Turing machine how to increment
its state and tape by one time step. The result of running the Turing machine
is then the result of iterating this fixed code. Another (imperfect) analogy is
with lambda calculi, where a single step naturally corresponds with a single
[B-reduction.

With this intuition in mind, we will be interested in the operation of “it-
erating” the application of our functions until they halt. In order to make this
precise, we will need a notion capturing when the result of a single operation has
halted. We will achieve this by requiring one state, |}, to be a “halting state”.
In particular, we will require that if an element is in the halting state, then any
code applied to it does not change it.

Definition 3. Suppose A = (A x I,®) is a total PAS such that I has two (dis-
tinct) distinguished elements 0,1}, and let {-,-) denote elements of the cartesian
product A x I. We say that A is a step algebra when

1. {a,i) ®b = {a,j)®b for alla € A, i,j €1, andb € A, and
2. a® (b)) = (b,{) for allac A and b € A.

We write Step to denote the class of step algebras.

As with PCAs, in step algebras we will use the convention that when a,b € A,
then ab represents the element a ® b, and will associate to the left.

The elements of a step algebra are meant to each describe a single step of a
computation. Under this intuition, an entire (partial) computation arises from
repeated application. Specifically, suppose a = (a,0) and b = (b, 0) are elements
of a step algebra A = (A x I, ®). Then the computation describing a applied to
b corresponds to the sequence

b, ab, a(ab), a(a(ab)), ...,

where if the sequence ever reaches a halting state (c,l}), the computation is
deemed to have finished with output c¢. Note that because of Definition 3.2, at
most one such halting state can ever be reached by repeated application of a
to b. We now make precise this intuition of a partial computation arising from
steps.

Definition 4. We define the closure map P : Step — PAS as follows. Suppose
A= (Ax1,®) is a step algebra. Let P(A) be the PAS (A, o) such that

aob=c
if and only if there is a sequence of elements cg,...,Cnp, € A satisfying
° <b, O> = Co,
e {a,0) ®c; =ciy1 for 0 <i<m, and
b <C’ ‘U’> = cm-

We now show that in fact every PAS is the closure of some step algebra.

Lemma 2. The map P is surjective. Namely, for every PAS B = (B, o) there
is a step algebra A = (B x {0,{},®) such that P(A) =B.

Proof. Let ® be such that

e {(a,i) ® (b,0) = (ab,|}) for all a,b € B such that ab| and i € {0, |},
e {(a,i) ® (b,0) = (b,0) for all a,b € B such that abt and i € {0,{}, and
e a® (b,)=(,{) forallac Aandbe B.

Note that A is a step algebra, as Definition 3.1 holds because the first and second
points in the definition of ® here are independent of 4. We have P(A) = B because
for all a,b € B, if ab] then (a,0) ® (b,0) = (ab,|}), and if abf then (a,0) acts as
the constant function on (b, 0). O

As we have just seen, every PAS comes from a step algebra where each
computation occurs as a single step. Note that the collection of terms in a PAS
can be made into a PAS itself by repeated reductions that consist of a single
application of elements in the underlying PAS. Associated to such a PAS of
terms, there is a natural step algebra, in which each step corresponds to a single
term reduction.

Ezample 3. Suppose A = (A, o) is a PAS. Let A* be the collection of closed
terms of A. Suppose the term a contains a leftmost subterm of the form b o ¢,
for b,c € A. Let a™ be the result of replacing this subterm with the value of boc
in A, if boc|, and let a™ be any value not in A otherwise. If a contains no such
subterm, let a™ = a. We define the step algebra (A* x {0,1,1,{},®*) by the
following equations, for all a,b € A* and i € {0, 1,1, }.

8

~

®
*

1) when b+ & A*;
}) when b = b; and
f

)
Now let (A*,0*) = P(
for any sequences a,b € A
evaluates to ¢ in A.

*

A* % {0,1,1,},®")). It is then easily checked that
and ¢ € A, we have a o* b = ¢ if and only if (a) o (b)

We now turn to a context where we are guaranteed to have more concrete
tools at our disposal, with the goal of finding conditions that ensure that the
closure of a step algebra is a PCA.

4 Complete Step Algebras and PCAs

The notion of a step algebra is rather abstract, and provides relatively little
structure for us to manipulate. We now introduce some basic computational
operations that will ensure that the closure of a step algebra is a PCA. These
are modeled after the standard techniques for programming on a Turing machine
(or other ordinary model of computation), but make use of our abstract notion
of computation for the basic steps.

Specifically, there are four types of operations that we will consider. First,
there is a very abstract notion of “hidden variables”; this allows us to read in
and keep track of two elements, for future use. Second, there is the notion of an
iterative step algebra; given two pieces of code, this provides code that runs the
first until it halts, then runs the second until it halts on the output of the first,
and finally returns the result of the second. We also allow for passing the hidden
variables from the code running the pair to each of the individual pieces of code
it runs. Third, we require code that returns the first hidden variable. Fourth, we
require a pairing operation that allows us to either run the first hidden variable
on the first element of the pair, or run the second hidden variable on the second
element of the pair, or run the first element of the pair on the second.

We will show that the closure of a step algebra having such operations con-
tains S and K combinators. In particular, by Lemma 1, this will show that
having such operations ensures that the closure is a PCA.

‘We now introduce the notion of hidden variables; while this definition is quite
general, we will make use of it later in the specific ways we have just sketched.

Definition 5. Suppose A = (A x I, ®,vg,v1,7) is such that

o (AXI,®) is a step algebra,
o 7:A— A is total, and
o vo,v1: A— AU{D} are total.

We say A has hidden variables when for all b € A there is a (necessarily
unique) a® € A satisfying

o (r(a),0) ® (b,0) = (a®, |}) and
o vi(a’) =b and vo(a®) = vy (a).

We will use the notation a”¢ to mean the element (a®)c.

The rough idea is to require a stack containing at least two elements (which
we sometimes refer to as the registers). The code r(a) reads in the next element,
b, and returns the code for “a with b pushed on the stack”. In this view, v1(a)
is the element most recently read by the code.

Before proceeding to see how this formalism is used, we make a few observa-
tions. First, we have not required that the states are preserved (although some
step algebras may nonetheless keep track of their state); this is because we will
mainly treat the objects we read in only as code, not data. Second, note that we
have only assumed that the stack has two elements. (Likewise, some step alge-
bras may happen to keep track of the entire stack — e.g., as part of a reversible
computation.)

Definition 6. Suppose A = (A x I, ®, (vo,v1,7), (70, 71,t)) is such that

o (AX I, ®,v9,v1,7) 18 a step algebra with hidden variables,

o Mo, AXAXAXAXIT — I with mg,m both total and injective in the last
coordinate (i.e., m;(ag,a1,lo,l1,-) is injective for each agp,a1,lo,ly € A), and

o t:Ax A— A is total

We then say that A is an iterative step algebra if whenever ag, ay,ly,l1,b €
A ’LUZth ’/Tg() = 7T0(a0, ap, lo, ll, '), WT() = 7T1(CL07CL17 lo, 117 ’), andt = t(ao, al)lf”ll,
we have

® <t70> ® <b7 O> = <ba 778(0»’

() when (ag""*,0) ® (b, j) = (V' 5') and j' #|,
(0)) when (ag",0) ® (b,j) = (¥, 1),

o o
o~
==
= =
®
o~ o~
Rl
3 3
Ox O%
—~
Sl <
~—
~
I

(v,
/ *
9 7-‘-1

(b

o (t,0)® (b, (j)) = (V.7 (j")) when (a}",0) ® (b,5) = (¥, 5") and j' £,
and

o (t,0)® (b,m1(j)) = (', 1) when (a",0) ® (b,) = (¥, 1).

Intuitively, a step algebra is iterative when for every pair of code ag and aq,
there is code such that when it has [y and [; as its stack variables and is given
a piece of data in state 0, it first runs ag with stack values (I, 1) until it halts,
then resets the state to 0 and runs a; with stack values (I, 1) until it halts, and
finally returns the result.

Note that while we have only defined this for pairs of code, the definition
implies that elements can be found which iteratively run sequences of code of
any finite length. We write ¢,,, .. 4,, for code that first runs ag (with appropriate
stack values) until it halts, then runs a; (with the same stack values) until it
halts, and so on.

There are two subtleties worth mentioning about 7§ and 7j. First, these take
as input the states of ¢ as well as the code that ¢ is following. This is because we
want it to be possible, in some cases, for 7§, 7] to keep track of the operations
being performed.

Second, while we have assumed that 7§ and 7} are always injective, we have
not assumed that they have disjoint images (even outside of {{}). One example
that might be helpful to keep in mind is the case of I = NU {{}, 1} where each
element of our step algebra is constant on elements whose state is in {{, 1},
where 7§, 7] are constant on {{,{}, and where 7f(n) = 2-n + i+ 1. In this
case we can think of the state f} as “diverges”, i.e., a state that if reached will
never halt, and we can think of of the maps 7; as using the natural bijections
between even and odd natural numbers to “keep track” of what state we are in
as we apply multiple pieces of code.

We are now able to give the two conditions that guarantee the desired com-
binators.

Definition 7. Suppose A = (A x I,®, (v, v1,7)) is a step algebra with hidden
variables. We say A that has constant functions when there is some ¢ € A
such that for all x,y € A, we have (¢*,0) o (y,0) = (x,).

We can think of ¢ as code that simply returns the value in its first register. In
this case, ¢® is then code that already has z in its first register and that returns
the value in its first register. In particular, we have the following easy lemma.

Lemma 3. Suppose A = (A x I, ®, (vg,v1,7)) is an iterative step algebra with
a constant function c. Let (A,0) = P((A X I,®)) be the closure of A. Then for
all z,y € A, we have (r(c)ox)oy = z.

Proof. The code r(c) first reads z into its first register, and then returns ¢®,
which itself is code that returns what is in the first register (i.e., x). ad

In particular, if A is an iterative step algebra with a constant function, then
the closure of A has a K combinator.

Definition 8. Suppose A = (A x I, ®, (vo,v1,7), ([-,], P, Po, P1,P2)) is such that

o (AXI,®,v9,v1,7) 18 a step algebra with hidden variables,
o [,-]: AXx A— A is total, and
s P,Po;p1,p2 € A

We then say that A has pairing when for all ag,a1,bg,b1 € A and j € 1,

o (p"*,0) @ (b, 0) = ([bo, bo],),

o (5", 0) ® ([bo, b], j) = ([V', b1].) when (ao,0) ® (bo,) = (V',),

® < a170> ® <[b07b1]7]> <[b07bl]7 .I> when <a170> ® <b17 > <b/7jl>)

o (py ado’a170>®<[0:01],5) = ([bo, '], 5) when (by, 0)® (b1, j) = (V', ") and j' #|,

o (037, 0) ® ([bo, bu], j) = (V' ") when (bo,0) ® (b1, j) = (V').

We say that A = (A x I, ®, (vo,v1,7), (70, 71, 1), ([,], s D0, P1,D2)) is an it-
erative step algebra with pairing when (A x I, ®, (vo,v1,7), (70, 71,t)) is an it-
erative step algebra and (A x I, ®, (v, v1,7), ([,-], P, Do, P1,D2)) s a step algebra
with pairing. We will sometimes abuse notation and speak of the closure of A to
mean P((A x I, ®)).

Intuitively, we say that A has pairing when there is an external pairing func-
tion [-,-] along with an element of A that takes an element and pairs it with
itself; an element that applies what is in the first register to the first element of
the pair; an element that applies what is in the second register to an element of
the pair; and an element that applies the first element of the pair to the second
element, returning the answer if it halts.

Lemma 4. Suppose A= (A X I7 ®a (UOa U1, T)a (7707 1, t)a ([N]ap7p07p17p2)) 18
an iterative step algebra with pairing. Then the closure of A has an S combinator.

Proof sketch. Suppose (A,0) is the closure of A. Let Sy =) py.p,.p. and let
S = r(r(S2)). Intuitively, Sy takes an argument d and then runs the following
subroutines in succession:

o Return [d,d].

e Return [vg(S2) o d,d].

o Return [vo(S2) o d,v1(S2) o d].

e Return (vg(S2) o d) o (v1(S2) o d).

But then Sab is code that first reads in a, then reads in b (and moves a to the Oth
register), and then performs the above. Hence S is the desired combinator. O

Definition 9. Let A = (A x I,®) be a step algebra. We say that A is a com-
plete step algebra when it can be extended to an iterative step algebra with
pairing and with constant functions.

Theorem 1. If A is a complete step algebra, its closure is a PCA.
Proof. This follows immediately from Lemma 1, Lemma 3, and Lemma 4. O

Conjecture 1. Every PCA is isomorphic to a PCA that arises as the closure of
a complete step algebra (for a suitable notion of isomorphism).

5 Future Work

Here we have begun developing a notion of a single step of a computation, in the
setting of PCAs. Having done so, we can now begin the project of developing
robust notions of efficient computation in this general setting. For example,
we aim to use step algebras to extend a notion of computational complexity
to arbitrary PCAs (e.g., by considering suitably parametrized families of step
algebras).

Many questions also remain about the class of step algebras whose closures
yield the same PCA. In particular, there are many natural options one might
consider within the partition on step algebras induced in this way. For example,
the relationship between a step algebra and the one obtained by uniformly col-
lapsing every n-step sequence into a single element, or those obtained by many
other transformations, remains unexplored.

Finally, we plan to use step algebras to develop a notion of reversible com-
putation in the general context of PCAs. The fine-grained analysis of compu-
tational steps might be used to ensure that each step is injective (whether by
requiring that a complete step algebra keep track of its entire stack, or obtained
by other means). Under an appropriate formulation of reversibility, one might
explore whether, for every PCA, there is an essentially equivalent one in which
computation is fully reversible.

Acknowledgements

The authors thank Bob Lubarsky for helpful conversations, and thank Rehana
Patel, Dan Roy, and the anonymous referees for comments on a draft. This
publication was made possible through the support of grants from the John
Templeton Foundation and Google. The opinions expressed in this publication
are those of the authors and do not necessarily reflect the views of the John
Templeton Foundation.

References

[Aka04]
[BDG09)]
[Cur29]
[Feng0]

[Fri71]

[Gur00]

[Lon95]

[Mos01]

[Rat06]

[Sch24]
[vOO06]

[vOO08]

Akama, Y.: Limiting partial combinatory algebras. Theoret. Comput. Sci.
311(1-3), 199-220 (2004)

Blass, A., Dershowitz, N., Gurevich, Y.: When are two algorithms the same?
Bull. Symbolic Logic 15(2), 145-168 (2009)

Curry, H.B.: An analysis of logical substitution. Amer. J. Math. 51(3),
363-384 (1929)

Fenstad, J.E.: General recursion theory: an axiomatic approach. Perspectives
in Mathematical Logic. Springer-Verlag, Berlin (1980)

Friedman, H.: Algorithmic procedures, generalized Turing algorithms, and
elementary recursion theory. In: Logic Colloquium ’69 (Proc. Summer School
and Collog., Manchester, 1969). North-Holland, Amsterdam, 361-389 (1971)
Gurevich, Y.: Sequential abstract-state machines capture sequential algo-
rithms. ACM Trans. Comput. Log. 1(1), 77-111 (2000)

Longley, J.: Realizability toposes and language semantics. PhD thesis, Uni-
versity of Edinburgh, College of Science and Engineering, School of Infor-
matics (1995)

Moschovakis, Y.N.: What is an algorithm? In: Mathematics unlimited—2001
and beyond. Springer, Berlin, 919-936 (2001)

Rathjen, M.: Models of intuitionistic set theories over partial combinatory
algebras. In: Theory and Applications of Models of Computation (TAMC
2006). Vol. 3959 of LNCS. Springer, Berlin, 68-78 (2006)

Schénfinkel, M.: Uber die Bausteine der mathematischen Logik. Math. Ann.
92(3-4), 305-316 (1924)

van Qosten, J.: A general form of relative recursion. Notre Dame J. Formal
Logic 47(3), 311-318 (2006)

van Oosten, J.: Realizability: an introduction to its categorical side. Vol.
152 of Studies in Logic and the Foundations of Mathematics. Elsevier B. V.,
Amsterdam (2008)

