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ABSTRACT. Building on recent results regarding symmetric probabilistic construc-
tions of countable structures, we provide a method for constructing probability mea-
sures, concentrated on certain classes of countably infinite structures, that are in-
variant under all permutations of the underlying set that fix all constants. These
measures are constructed from inverse limits of measures on certain finite structures.
We use this construction to obtain invariant probability measures concentrated on the
classes of countable models of certain first-order theories, including measures that do
not assign positive measure to the isomorphism class of any single model. We also
characterize those transitive Borel G-spaces admitting a G-invariant probability mea-
sure, when G is an arbitrary countable product of symmetric groups on a countable
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Symmetric probabilistic constructions of mathematical structures have a long his-
tory, dating back to the countable random graph model of Erdés-Rényi [ER59], a con-
struction that with probability 1 yields (up to isomorphism) the Rado graph, i.e., the
countable universal ultrahomogeneous graph. In this paper, we build on recent develop-
ments that have extended the range of such constructions. In particular, we consider
when a symmetric probabilistic construction can produce many different countable
structures, with no isomorphism class occurring with positive probability. We also
consider probabilistic constructions with respect to various notions of partial symme-

try.

One natural notion of a symmetric probabilistic construction is via an wnvariant
measure — namely, a probability measure on a class of countably infinite structures
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that is invariant under all permutations of the underlying set of elements. When such
an invariant measure assigns probability 1 to a given class of structures (as the Erdés-
Rényi construction does to the isomorphism class of the Rado graph), we say that it is
concentrated on such structures, and that the given class admits an invariant measure.

For several decades, most known examples of such invariant measures were variants of
the Erdds-Rényi random graph, for instance, an analogous construction that produces
the countable universal bipartite graph. In recent years, a number of other important
classes of structures have been shown to admit invariant measures, most notably the
collection of countable metric spaces whose completion is Urysohn space, by Vershik
[Ver02b], [Ver04], and Henson’s universal ultrahomogeneous K,-free graphs by Petrov
and Vershik [PV10]. Both constructions are considerably more complicated than the
Erdés-Rényi construction. By extending the methods of [PV10], Ackerman, Freer, and
Patel [AFP12] have completely characterized those countable structures in a countable
language whose isomorphism class admits an invariant measure.

In the present paper we extend the construction of [AFP12]. Our new construction
is more streamlined than the one in [AFP12], and also broader in its consequences.
Both constructions involve building continuum-sized structures from which invariant
measures are obtained by sampling, but the one in [AFP12] produces an explicit struc-
ture with underlying set the real numbers, necessitating various book-keeping devices,
which we avoid here.

As a first application of the present more general construction, we describe certain
first-order theories having the property that there is an invariant probability measure
that is concentrated on the class of models of the theory but that assigns measure 0
to the isomorphism class of each particular model. We thereby obtain new examples
of classes of structures admitting invariant measures, and new examples of invariant
measures concentrated on collections of structures that were previously known to admit
invariant measures.

Towards our second application, we consider measures that are invariant under the
action of certain subgroups of the full permutation group S, on the underlying set.
Note that any random construction of a countably infinite structure with constants
faces a fundamental obstacle to having an S..-invariant distribution, as described in
[AFP12]. Namely, if the distribution were S,.-invariant, then the probability that any
given constant symbol in the language is interpreted as a particular element would have
to be the same as for any other element, leading to a contradiction, as a countably
infinite set of identical reals cannot sum to 1. In other words, if a structure admits
an S.-invariant measure, then it cannot be in a language having constant symbols.
Furthermore, if a measure concentrated on the isomorphism class of the structure is
invariant under a given permutation, then that permutation must fix all elements that
interpret constant symbols.

With that obstacle in mind, we may ask, more generally, which structures admit
measures that are invariant under all permutations of the underlying set of the structure
and that fix the restriction of the structure to a particular sublanguage. We answer
this question in the case of a unary sublanguage, i.e., where the sublanguage consists
entirely of unary relations. By results in descriptive set theory, this is equivalent
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to describing all those transitive Borel G-spaces admitting a G-invariant probability
measure when G is a countable product of symmetric groups on a countable (finite or
infinite) set. This constitutes the second application of our construction.

In the special case of undirected graphs, our methods for producing invariant mea-
sures can be viewed as constructing dense graph limits, in the sense of Lovasz and
Szegedy [LS06] and others; for details, see [Lov12]. In fact, by results of Aldous
[Ald81], Hoover [Hoo79], Kallenberg [Kal92|, and Vershik [Ver02a] in work on the
probability theory of exchangeable arrays, an invariant measure on graphs is neces-
sarily the distribution of a particular sampling procedure from some continuum-sized
limit structure. For more details on this connection, see Diaconis and Janson [DJOS§]
and Austin [Aus08].

Our work also has connections to a recent study of Borel models of size continuum
by Baldwin, Laskowski, and Shelah [BLS15], building on work of Shelah [She90, Theo-
rem VII.3.7]. Their continuum-sized structures, like ours, are constructed from inverse
limits; however, our methods differ from theirs in several respects and, unlike [BLS15],
our focus is on the consequences of these constructions for invariant measures.

1.1. Outline of the paper. In Section 2, we provide preliminaries for our construc-
tions, including definitions and basic results from the model theory of infinitary logic
and from descriptive set theory.

We then pause, in Section 3, to provide a toy construction, for graphs, that will
motivate the more technical aspects of our main construction.

In Section 4, we present our main technical construction, in which we build a special
kind of continuum-sized structure from inverse limits.

In the following sections, we provide two applications of this main construction.
First, in Section 5, we use it to provide new constructions of invariant probability mea-
sures concentrated on the class of models of certain first-order theories, but assigning
positive measure to no single isomorphism class.

Second, in Section 6, we use the main construction to characterize those structures
that are invariant under automorphism groups that fix the restrictions of the structures
to unary sublanguages. As noted, this amounts to characterizing those transitive Borel
G-spaces that admit a G-invariant probability measure, when G is a countable product
of symmetric groups on a countable (finite or infinite) set.

2. PRELIMINARIES

In this section, we describe some notation, and introduce several basic notions re-
garding infinitary logic, transitive G-spaces, and model-theoretic structures and their
automorphisms that we will use throughout the paper.

The set N<“ is defined to be the collection of finite sequences of natural numbers.
For x,y € N<“ we write x =< y when z is an initial segment of y. The set N“ is the
collection of countably infinite sequences of natural numbers. For z € N¥, we write x|,
to denote the length-n initial segment of x in N”, and similarly for elements of N<“ of
length at least n.
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Suppose j € N. For xg,...,2;,%,...,y; € N, we write

(x07 cee ,.f]) E (yOa s 7y])
when x; < y; for 0 <7 < 5.

We write a”b to denote the concatenation of a,b € N<“  though we often omit the
symbol * when concatenating explicit sequences. Occasionally we will use exponential
notation for repeated numerals; e.g., 0422 denotes 000022 € N<¥. Define the projec-
tion function

m: N — N<¥
by
m(a"b) = a
when ¢ € N<“ and b € N, and

() =,

where () denotes the empty string. Write the composition of projection with itself as
7% := 7 on. We will use this notation in §4.2.

Define Ry :={z €R : >0} and Qs :={x € Q : = > 0}.

A probability measure on R is said to be non-degenerate when every non-empty
open set has positive measure and atomless when every singleton has measure 0.

We say that a probability measure p on an arbitrary measure space S is concen-
trated on a measurable set X C S when p(X) = 1. Given a measurable action of a
group G on S, we say that p is G-invariant if (X)) = u(g - X) for every g € G and
measurable X C S.

2.1. Model theory of infinitary logic. We now briefly recall notation for finitary
and infinitary formulas. For more details on such formulas and on the corresponding
notion of satisfiability (denoted by |=), see [Bar75] and [Mar02, §1.1]. Throughout this
paper, L will be a countable language, i.e., a countable collection of relation, constant,
and function symbols. Fix an implicit set of countably infinitely many variables. Then
L.,.(L) is the set of all (finitary) first-order formulas (in that set of variables) with rela-
tion, constant, and function symbols from L. The set L, ,,(L) of infinitary L-formulas
is the smallest set containing £, (L) and closed under countable conjunctions, exis-
tential quantification, and negation, and such that each formula has only finitely many
free variables. In particular, £, ,,(L) is closed under taking subformulas. A sentence is
a formula having no free variables, and a theory is an arbitrary collection of sentences.

Let &k € N and let xq,..., 2, be distinct variables. A (complete) quantifier-free
L-type g with free variables x1, ...,z is a countable collection of quantifier-free for-
mulas of L, (L) whose set of free variables is contained in {z1, ..., z;}, and such that
for any quantifier-free L, ,,(L)-formula ) whose free variables are among z, ..., zy,
either

}:(Vxl,...,xk)(/\gp—H/J) or ):(Vxl,...,xk)(/\g)%ﬂw).

Note that any collection ¢ of formulas which has this property with respect to all atomic
formulas ¢ € L, (L) is already a complete quantifier-free L-type.
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Note that we will consider quantifier-free types to entail a fixed ordering of their free
variables. This will be important because for a quantifier-free type ¢ with k-many free
variables, and a set X of size k with a specified ordering <, we will sometimes write
q(X) to represent the statement that q(¢1,...,¢x) holds, where ¢; < --- < ¢} are the
elements of X.

We say that a quantifier-free type with free variables z1,...,x; is non-constant
when it implies that none of zq, ...,z instantiates a constant symbol, and is non-
redundant when it implies

N (@i # ).
1<i<j<k

Suppose Lg is a sublanguage of L, i.e., each of the sets of relation, constant, and
function symbols of Lg is a subset of the corresponding set for L. Then the restriction
q|r, of a quantifier-free L-type to Lg is defined to be set of atomic Lo-formulas and
their negations that are implied by /\ oeq P

An L-theory T is quantifier-free complete when it is consistent and for every
quantifier-free L-sentence ¢, exactly one of T' |= ¢ or T' = = holds.

We will later make use of the notion of a Scott sentence: a sentence of L, ., (L)
which characterizes a given countable structure up to isomorphism among other count-
able L-structures. For more details, see [Bar75, Corollary VII.6.9]. We will also use
the notion of an admissible set, and in particular the admissible set HF of hereditarily
finite sets; again see [Bar75].

For a structure M with underlying set M, a natural number k£ € N, and a k-tuple
a = (ay,...,ar) € M*, we will sometimes abuse notation and write either @ € M or
a € M to mean that aq,...,a; € M. We will also sometimes write a; - - - a; to denote
such a tuple.

Suppose M is an L-structure. When U is a relation symbol in L, we write UM
to denote the set of tuples @ € M such that M = U(a@). Similarly, we write ¢M for
the instantiation in M of a constant symbol ¢ € L and f™ to denote the function on
M-tuples corresponding to the function symbol f € L. Given a sublanguage Ly C L,
we write M|, to denote the restriction of M to Ly.

2.2. Definitional expansions. Fundamental to our main construction is a special
sort of sentence. We define the pithy I, sentences of L, (L) to be those
L., (L)-sentences that are of the form

(VZ)(3y)p(T, ),

where ¢ € L, (L) is quantifier-free with free variables precisely 7, y, and where the
tuple T of variables is possibly empty. We say that a theory T' C L, (L) is pithy II,
when each sentence in 7T is.

In Sections 5 and 6 we will make use of the following technical result, which produces
a definitional expansion of the empty theory to a pithy II, theory >4 in which every
formula in a desired admissible set A is equivalent to a quantifier-free formula; we call
Y4 the definitional expansion for A. This result is a straightforward extension of
the standard Morleyization method.
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Lemma 2.1. For every admissible set A O L, there is an expanded language L, C A
and a pithy Iy theory ¥4 C Ly, w(La) N A such that

(i) for every formula ¢ € L, (L) N A, there is some atomic formula R, € La
such that

Sa b= (V2) | (V) Ryl w) © 9(2)) A ((Bw) Ryl w) & ()]

where T is the tuple of free variables of ¢,

(ii) every L-structure has a unique expansion to an L a-structure that satisfies ¥4,
and

(iii) X4 implies that every atomic formula of Lyw(La) \ Luw(L) is equivalent to
some formula of L, ,(L) N A.

Proof. Consider the countable language Ly := LU{Ry : 1 € A}, where each relation
symbol R, is a distinct element of A\ L and has arity one more than the number of
free variables in 1.

Let X4 be the countable £, ,,(L4)-theory consisting of the following II, sentences:

. (V_ w)[Rp(T,w) <» P(Z)] for P a relation symbol in L of arity |Z|,
o (VZ,w)[R.(y,w) <> ¢ = y] for ¢ a constant symbol in L,
o (VT )[Rf(a: y,w) < f(T) =y] for f a function symbol in L of arity |z,
o (VE, )[Ry (7, 0) ¢ ~Ry(7, )]
d ( )[R/\ Eﬂ/}z(x w) AN /\zel Rd)z(z“ )]’
o (VZ, w)[Rzy), (T, w) < (y)Ry(T,y, w)], and

. (Vfaw)[R(ay)w(x w) < (Jy) Ry (T, w)],
where T is a tuple containing precisely the free variables of ¢ € A, where A, ; ¥; € A,
where the tuple Z; C 7T contains precisely the free variables of 1; for each ¢ € I, and
where the free variables of ¢ € A are precisely the variables in Ty, with y € 7.

Note that (VZ)[p(T) <> ¢ (T)] is equivalent to (VZ)[p(T) — ©(Z)|A(VT)[Y(T) — ¢(T)].
Hence ¥4 is equivalent to a theory all of whose axioms are either II; or pithy Il.
Further, every II; sentence is equivalent to some pithy II; sentence. Hence we may
assume without loss of generality that >4 itself is a pithy II, theory.

Observe that ¥4 C A and that

S ()] ((F0) Ro(,0) 5 (1) A (F0) Ry, 0) + 9(m)],

for all ¢ € L, »(La) N A, where 7 is the tuple of free variables of .

Note that in the definition of ¥4, we included the dummy variable w in order to
ensure that for every 1) € A, there is a universal formula that is equivalent to 1 in
every model of ¥ 4, even for quantifier-free ). This is needed in order for 4 to itself be
pithy Ils, which often is not required in the usual first-order Morleyization procedure
[Hod93, Theorem 2.6.6].

An immediate generalization of [Hod93, Theorem 2.6.5] to countable fragments of
L., (L) shows that every L-structure M has a unique expansion to an L 4-structure
that satisfies ¥ 4. Finally, ¥4 implies that every atomic formula of L, (La) \ Ly (L)
is equivalent to some formula of £, (L) N A. O
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We will make use of Lemma 2.1 in the proof of Proposition 6.14.
For a first-order theory T' C L, (L), we define the pithy II, expansion of T to
be the L, ., (Lyr)-theory

Zup U{(V2)Ry(x) : ¢ €T},

where HF denotes the hereditarily finite sets. We will make use of this notion in
Lemma 5.2 and Theorem 5.3.

2.3. Fraissé limits and trivial definable closure. Suppose that the countable lan-
guage L is relational, i.e., does not contain constant or function symbols. The age of
an L-structure M is defined to be the class of all finite L-structures isomorphic to a
substructure of M.

A countable L-structure M is said to be ultrahomogeneous when any partial
isomorphism between finite substructures of M can be extended to automorphism of
M. Any two ultrahomogeneous countably infinite L-structures have the same age if
and only if they are isomorphic. The age of any ultrahomogeneous countably infinite
L-structure is a class that contains countably infinitely many isomorphism types and
that satisfies the so-called hereditary property, joint embedding property, and amal-
gamation property. Conversely, any class of finite L-structures that is closed under
isomorphism, contains countably infinitely many isomorphism types, and that sat-
isfies these three properties is the age of some ultrahomogeneous countably infinite
L-structure, in fact a unique such structure (up to isomorphism), called its Fraissé
limit; such a class of finite structures is called an amalgamation class. An amal-
gamation class is called a strong amalgamation class when it further satisfies the
strong amalgamation property — namely, when any two elements of the class can be
amalgamated over any finite common substructure in a non-overlapping way.

It is a standard fact that the first-order theory of any Fraissé limit in a finite relational
language has an axiomatization consisting of pithy II, sentences that are first-order.
These axioms are often referred to as (one-point) extension axioms. For more details,
see, e.g., [Hod93, §7.1].

Let M be an L-structure and let M be its underlying set. Suppose X C M. The
definable closure of X in M, written dcl(X), is the set of all elements of M that are
fixed by every automorphism of M fixing X pointwise. We say that M has trivial
definable closure when dcl(a) = @ for all finite tuples @ € M. An ultrahomogeneous
countably infinite structure M in a relational language has trivial definable closure if
and only if its age has the strong amalgamation property (again see [Hod93, §7.1]).

2.4. Transitive G-spaces. Let (G,e,-) be a Polish group. We now recall the notion
of a transitive Borel G-space.

Definition 2.2. A Borel G-space (X, o) consists of a Borel space X along with a
Borel map o: G x X — X such that

e (g-h)ox=go(hox) for every g,h € G and x € X, and

ecox=u for everyx € X.
For Borel G-spaces (X,0x) and (Y,oy), a map 7 between (X,ox) and (Y,oy) is a
Borel map 7: X =Y for which 7(gox x) = goy 7(x) for allg € G and x € X.
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A Borel G-space (X, 0) is a universal Borel G-space when every other Borel G-space
maps injectively into it.

Definition 2.3. A Borel G-space (X, o) is transitive when for every x,y € X there
is some g € G such that gox =y, i.e., the action o has a single orbit. Fquivalently,
there is no proper subspace Y C X such that (Y,0) is also a Borel G-space.

Note that in particular, any orbit of a Borel G-space is itself a transitive Borel
G-space under the restricted action.

The main result of Section 6 is a classification of transitive Borel G-spaces for certain
groups G.

2.5. Structures and automorphisms. We consider three types of countable struc-
tures: those with underlying set N, those with a fixed countable set of constants disjoint
from N, and those with underlying set N whose restriction to a sublanguage is some
fixed structure.

2.5.1. The Borel space of countable structures. We now define the Borel space Stry,
and its associated logic action. These notions will be used throughout the paper, and
especially in Sections 3, 5, and 6.

Definition 2.4. Let L be a countable language. Define Stry, to be the set of L-structures
with underlying set N.

Definition 2.5. Let L be a countable language. Then for every L., .(L)-formula ¢,
define

IIQO(EI; R ,éj)]] = {M S StI‘L M ): (,0(51, e ,éj)}
for all by, ...,¢; € N, where j € N is the number of free variables (possibly 0) of .

When Str;, is equipped with the o-algebra consisting of all such sets [¢(¢1, ..., ¢;)],
it becomes a standard Borel space; for details, see [BK96, §2.5]. Note that when we
say that a probability measure is concentrated on some class of models of an L-theory,
we mean that the measure is concentrated on the restriction of that class to Stry.

Definition 2.6. For a non-empty set A, we write Sa to denote the symmetric group
on A. Forn € N, we write S,, to denote Syo,. n—1}, and we will use Sy to denote Sy,
the symmetric group on N.

Definition 2.7 ([BK96, §2.5]). Let L be a countable language. Define the Borel
Soo-action
®r: Se X Strp — Stry,
to be such that for all g € So and M € Strp,
g®L M E by, )
if and only if

ME (g7 (), 97 ()
for all L, (L)-formulas ¢ and all ¢y, ..., {; € N, where j is the number of free variables

of ¢.
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2.5.2. Countable structures with a fized set of constants. We now define the analogous
notions for the situation where we instantiate constants by elements other than ones
from N. We will need these notions in Section 4.

Definition 2.8. Let L be a countable language and let C' be the set of its constant
symbols (possibly empty). Let Cy be a countable set (empty when C' is empty) that is
disjoint from N, and suppose €y: C' — Cy is a surjective function. Then define Stre, 1,
to be the set of L-structures with underlying set N U Cy in which the instantiation of c
is 6o(c), for each constant symbol ¢ € C'. In particular, no element of N instantiates
any constant symbol of L.

Note that when L has no constant symbols, then C' = Cy = () and % is the empty
function, and we have Stre, ;, = Stry.

Definition 2.9. Let L be a countable language with C' its set of constant symbols, and
let Cy and 6y be as in Definition 2.8. Then for every L., .(L)-formula ¢, define

[[gD(gl, e ’Ej)]](ffo = {M S StI‘cgmL : M IZ (,0(61, ce ,Ej)}
for all 0y,...,0; € N, where j € N is the number of free variables (possibly 0) of .

When Strg, ; is equipped with the o-algebra consisting of all such sets
[(lr, ... 45)]y,, it likewise becomes a standard Borel space.

Definition 2.10. Let L be a countable language with C' its set of constant symbols, and
let Cy and 6y be as in Definition 2.8. Define S© C Syue, to be the subgroup consisting
of all permutations of NU Cy fizing Cy pointwise. Define the Borel S{°-action

B, L Sgoo X Stlﬁgo,[l — Stl“(go’L
to be such that for all g € S and M € Stry, 1,

9 ®g,L M=l ..., 4)
if and only if
M o(g7' (), 97 (L)
for all L, ,(L)-formulas ¢ and all ¢y, ..., ¢; € N, where j is the number of free variables

of p.

Note that any permutation of N extends uniquely to a permutation of N U C that
fixes Cy pointwise, and every such permutation of NU Cj restricts to a permutation of
N, and hence Sy, = 5.

2.5.3. Relativized notions via sublanguages. Finally, we consider structures with under-
lying set N whose restriction to a sublanguage is some fixed structure. We will make
use of such structures in Section 6.

Definition 2.11. Let L be a countable language and let M be an L-structure with
underlying set N. We write Aut(M) to denote the automorphism group of M, i.e.,
the subgroup of S consisting of all permutations of N that preserve every relation,
constant, and function of M.
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Definition 2.12. Let L be a countable language and let Ly be a sublanguage of L. Let
My be an Lg-structure on N. Define Str%?L to be the collection of those structures in
Stry, whose restriction to Ly is My, i.e.,

Strﬁl?L = {M € Stry, : M|, = My}.

Note that when L has no constant symbols, Lq is the empty language, M is the
empty structure, and %, is the empty function, we have Str/LVO[?L = Strg,, = Strp.
If L does have constant symbols, but Ly and M, are empty, then we still have

Stry'0, = Stry.

Definition 2.13. Let L be a countable language and let Lo be a sublanguage of L. Let
My be an Lg-structure on N. Then for every L, .(L)-formula ¢, define

[[SO<£17 e ’Ej)]]./\/lo = {M S Str%?L M }: QO(fl, “ee ,Ej)}
forall ty,...,0; € N, where j € N is the number of free variables (possibly 0) of .

When Strﬁ/ol?L is equipped with the o-algebra consisting of all such sets
[o(lr, .., €5)] s, it also becomes a standard Borel space.

Definition 2.14 ([BK96, §2.7]). Let L be a countable language and let Ly be a sublan-
guage of L. Let My be an Lg-structure on N. Define the relativized logic action

@Y Aut(M,) x Str’L\;l?L — Str%f’L

to be the restriction of the action ®p: S, X Str;, — Stry.

3. TOY CONSTRUCTION

We now provide a toy construction of invariant measures via limits of finite struc-
tures, where the measure is concentrated on the isomorphism class of a single graph.
This is a simplification of a special case of the main construction of this paper, which
we present in order to illustrate several motivating ideas, in a considerably easier set-
ting. This toy construction is also a variant of a special case of the main construction
of [AFP12|, where it is shown that whenever a countably infinite structure M in a
countable language L has trivial definable closure, there is an S-invariant measure
on Str concentrated on the isomorphism class of M.

All graphs in this section will be simple graphs, i.e., undirected unweighted graphs
with no loops or multiple edges. Model-theoretically, such a graph is considered to be a
structure in the language of graphs, i.e., a language consisting of a single binary relation
symbol (interpreted as the edge relation), in which the edge relation is symmetric and
irreflexive.

This toy construction applies only to the special case where the target structure is
an ultrahomogeneous countably infinite graph having trivial definable closure. Admit-
tedly, there are not many such structures: only a small number of parametrized classes
of countably infinite graphs are ultrahomogeneous (see [LW80]), and fewer still have
trivial definable closure (see, e.g., [AFP12]) — and even those have been treated before
(essentially in [PV10]). However, this toy construction serves to illustrate some of the
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key ideas of the main construction. In fact, the case of graphs is particularly simple,
because it allows us to make use of results from the theory of dense graph limits.

Roughly speaking, given a target countably infinite ultrahomogeneous graph, we
will build a sequence of finite graphs such that subgraphs sampled from them (in an
appropriate sense) look more and more like induced “typical” subgraphs of the target.
Then the distribution of an appropriate limit of the random graphs resulting from this
sequence of sampling procedures will constitute the invariant measure concentrated on
the isomorphism class of our target.

Our construction of the sequence of finite graphs resembles a directed system of
finite graphs. This motivates our main construction in Section 4, which is built from
directed systems in a more precise sense.

A key notion in the toy construction will be that of “duplication”, whereby a sequence
of elements branches into multiple copies that stand in parallel relationship to each
other. This notion, too, will be essential in the main construction.

Suppose M is a countably infinite graph with underlying set M that is a Fraissé limit
whose age has the strong amalgamation property; recall that for relational languages,
this property is equivalent to M having trivial definable closure.

The strong amalgamation property implies an important property that we call du-
plication of quantifier-free types: given any finite subset A C M and any element
s € M\ A, there is some s’ € M \ A such that the quantifier-free type of AU {s} is
the same as the quantifier-free type of AU {s}.

As a consequence of this duplication property, for any sq,...,s, € M, we can find
sets S1,...,5, € M of arbitrary finite sizes such that each s; € S;, and such that for
any tuple s}, ..., s, satisfying s, € S; for 1 <i < n, the quantifier-free type of s, ..., s,
is the same as the quantifier-free type of sq,...,s,. We call the sequence S7,...,95, a
branching of sy, ..., s,, and say that each s; branches into |.S;|-many offshoots.

3.1. Convergence and graph limits. As above, let M be an arbitrary countably
infinite ultrahomogeneous graph whose age has the strong amalgamation property.
We will construct a probability measure on countably infinite graphs with underlying
set N that is invariant under arbitrary permutations of N and is concentrated on the
isomorphism class of M. We will do so by constructing a sequence (M;);en of graphs
of increasingly large finite size, and considering the corresponding sequence of infinite

random graphs (G(N, Mi)>i€N.

Definition 3.1. Let G be a finite graph. The infinite random graph induced from
G with replacement, written G(N,G), is a countably infinite random graph with
underlying set N with edges defined as follows. Let (x;)ien be a sequence of elements of
G uniformly independently sampled with replacement. Then distinct j, k € N have an
edge between them in G(N, G) precisely when x; and xy, have an edge between them in

G.

This sampling procedure has arisen independently a number of times; see [Lov12,
§10.1] for some of its history. The form we use can be concisely described using the
theory of dense graph limits, or graphons; see [Lov12, §11.2.2] for details. That work
describes, given a graphon, a distribution on countably infinite graphs built from that
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graphon, called the countable random graph model. This distribution corresponds to
the distribution of G(N, ) in Definition 3.1 in the case where the graphon in question
is the step-function built from G ([Lov12, §7.1]). Note, however, that this distribution
does not cohere with the definition in [Lov12, §10.1] of G(k, G) for finite k£ bounded by
the number of vertices of GG, which involves sampling without replacement.

Our goal is to find a sequence of finite graphs (M;);en as above, such that the
sequence of random variables (G(N, M;));en converges in distribution to a random
graph that is almost surely isomorphic to M, and whose distribution is invariant under
permutations of N. The invariance will be automatic, as each G(N, M,,) is obtained
via i.i.d. sampling, as described in the definition. In order to show the convergence, we
will use results from the theory of graphons.

Given a graph G, we write v(G) to denote the number of vertices of G.

Definition 3.2. Let F,G be finite graphs. Let k = v(F) and n = v(G). Then
tran(F, G), the full homomorphism density, is defined to be the fraction of maps
from F to G that preserve both adjacency and non-adjacency, i.e.,

Full(F, G)

tfull<F7 G) = le

Y

where Full(F, G) is the number of homomorphisms from F to G that also preserve
non-adjacency.

The value tp(F, G) may also be described in terms of the following random pro-
cedure. First consider an independent random selection of v(F')-many vertices of G
chosen uniformly with replacement, each labeled with the corresponding element of
F. (In particular, some vertices of G may be labeled by multiple vertices of F.) Then
tran (F, G) is the probability that the graph with labels from F' induced by the sampling
procedure is a labeled copy of F', preserving both edges and non-edges.

This notion of a full homomorphism occurs in the graph homomorphism literature,
e.g., in [HNO4, §1.10.10]. Note, however, that tg, is somewhat different from the
various densities that are typically used in the study of graph limits, namely, the
density ¢ of homomorphisms, t;,; of injective homomorphisms, and g of induced
injective homomorphisms, i.e., embeddings; for details see [Lov12, §5.2.2].

Definition 3.3. We say that a sequence of finite graphs (G;)ien is unbounded when
lim; o v(G;) = 0.

The following definition of a type of convergence is slightly nonstandard as it uses
L1, but is equivalent to the more usual definitions in the literature on dense graph
limits, which involve the other density notions, as described in the discussion in the
beginning of [Lov12, §11.1].

Definition 3.4. An unbounded sequence of finite graphs (G;);en is convergent when
the sequence of induced subgraph densities

(tean(F, Gi)>i€N

converges for every finite graph F'.
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Theorem 3.5 ([Lov12, Theorem 11.7]). Let (G;)ien be an unbounded sequence of finite
graphs that is convergent. Then <G(N, Gi)>i€N converges in distribution to a countably
infinite random graph whose distribution is an S -invariant measure.

In fact, every such S,-invariant measure is ergodic, as shown by Aldous [Kal05,
Lemma 7.35]; for an argument involving graph limits, see [LS12, Proposition 3.6].

Corollary 3.6. Let (G;)ien be an unbounded sequence of finite graphs. Suppose the
limaiting probability

lim P(G(N,G;) = ¢(0,...,0 —1))

1—00

exists for every quantifier-free type q in the language of graphs, where € is the number
of free variables of q. Then <G(N, Gz)> converges in distribution to an Sy -tnvariant
measure on countably infinite graphs.

Proof. By Theorem 3.5, it suffices to show that <tfuu(F ) Gl)>
finite graph F.

Let F' be an arbitrary finite graph with underlying set {0, ..., n—1}, where n = v(F).
Let gr be the unique non-redundant quantifier-free type with n-many free variables
such that

1€N

ieN converges for every

Fl=qr(0,...,n—1).
Note that, for each j € N,

tfuu(F, G]) = ]P)(G(N, G]) ): qF(O, Lo, — 1))
Hence <tfu11(F ! Gi)>i€N converges, as
<IP’(G(N, G)) = qr(0,.. . — 1))>

converges by hypothesis. O

€N

3.2. Construction. Because M is a Fraissé limit in a finite relational language, as
discussed in §2.3 we may take its first-order theory T" to be axiomatized by pithy Il
extension axioms, so that
T ={(vz)(3y)pi(T,y) : i € N},

where each ¢; is quantifier-free; we may further assume that for each i € N there are
infinitely many indices j € N such that ¢; = ¢;. We will consider, in successive stages,
each such formula ¢;(Z,y) and every tuple @ € M of the same length as Z, and will
look for witnesses in M to (Jy)yi(@,y), i.e., instantiations b € M of y that make
@i(a,b) hold in M.

Our construction proceeds in stages, at each of which we build a finite structure
larger than that in the previous stage. We will think of the structure that we build
at stage n as consisting of (n + 1)-many slices, each built at a substage. In the first
substage of stage n, we add a slice that consists of new witnesses to the formula under
consideration (or one new element, if no witnesses are needed). In the remaining
substages, we branch each element of each old slice into some number of offshoots.

Specifically, we divide each stage n into (n + 1)-many distinct substages indexed
by pairs (n, k), where 0 < k& < n. The substage (n,0) involves adding witnesses to
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extension axioms for everything from stage n — 1 (as one often does when iteratively
building a Fraissé limit). The substages (n, k), for 0 < k < n, consist of successively
branching elements. By duplicating ever larger portions, we cause the structure to
asymptotically stabilize.

More precisely, at substage (n, k) we will define a structure M* and a set B(n,n—k).
The intuition is that B(n,n) consists of new witnesses, while B(n,n — k), for
k > 0, consists of all elements of MP¥ that are offshoots of elements that first ap-
pear at substage (n — k,0). In particular, the underlying set of M* will be

n—1—k

U Bn—149) u |J B,

=0 i=n—~k
because at substage (n, k), the newly-constructed set B(n,n — k) contains all elements
of B(n—1,n—k).

Substage (0,0): Let MY be any finite substructure of the Fraissé limit M, and let
B(0,0) be its underlying set.

Substage (n,0), for n > 0: Let ¢, be one less than the number of free variables in the
formula ¢,. Let A be the set of those @ C M"] of length ¢, such that
M1 Viea en(@,b). We now define B(n,n) and MS. Consider whether or not
A is empty.

If A is non-empty, then for each @ € A choose a distinct element d; € M that
satisfies M? = ¢,(a,d;). We can always find such a collection of witnesses, be-
cause our formulas are realized in the Fraissé limit M. Furthermore, because M
has strong amalgamation, by duplication of quantifier-free types, we may assume that
for any distinct tuples @, @ € M""], the elements d; and dy are distinct. Define
B(n,n) = {dz : @ € A} and let M? be any substructure of M extending M"~] by
the elements of B(n,n).

If A is empty, then let B(n,n) consist of an arbitrary single element of M not in
M?~1, and set MY to be the (unique) substructure of M extending M”~} by the
element of B(n,n).

Substage (n, k) for 0 < k < n: Let a, := 2" 1 |B(n,n)|. Let M* be any substructure
of M that extends M¥~1 to some structure in which each element of B(n — 1,n — k)
branches into precisely a,,-many offshoots, and these are the only new elements. Let

B(n,n — k) be the set of those elements of M¥ that are an offshoot of some element
of B(n — 1,n — k). By the definition of «,,, we have

| B(n,n)|
| M|

This concludes the construction.

For notational convenience, we will henceforth refer to M} as M,,.
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In the verification, we will need a particular projection map. Let 7 be the following
map from the union of the underlying sets of all M,,, for n € N, to itself. The map
7 takes each element of B(n,n — k) to the element of B(n — k,n — k) of which it is
a k-fold offshoot (i.e., an offshoot’s offshoot’s offshoot, etc., k levels deep), for n € N
and 0 < k < n, and the identity map on each B(n,n). This is well-defined because if
an element of the domain is in both B(n, k) and B(m, (), then k = ¢. (Note that 7 is
not the same as the projection map 7 defined in Section 2, though it will play a similar
role here to that of 7 in the main construction in Section 4.)

3.3. Verification. We now show that the sequence of random graphs (G(N, Mi)>i€N
converges in distribution to a random graph that is almost surely isomorphic to our
original graph M. We show this in two parts: convergence to such a random graph,
whose distribution is an invariant measure on countable graphs, and concentration of
this invariant measure on the desired isomorphism class.

Proposition 3.7. The sequence of random graphs <G(N’Mi)>ieN converges in dis-
tribution to a countably infinite random graph whose distribution is an Ss.-invariant
measure.

Proof. Note that (M,);en is an unbounded sequence of finite graphs. Hence by Corol-
lary 3.6, it suffices to show that

(PG, M) F q(0,....0 = 1))

is Cauchy for every quantifier-free type ¢ in the language of graphs, where ¢ is the
number of free variables of ¢.
Fix such a ¢ and ¢. For each n € N, define

o1 = P(G(N,M,,) = ¢(0,...,0 = 1)) = P(G(N, My11) E q(0,...,0 —1)).

We will show that 4,1 decays exponentially in n for fixed /.

Let G, be a sample from G(N, M,), and let {(a;);en be the random sequence of
vertices (with replacement) chosen from M,, in the course of the sampling procedure.
Likewise, let G, 41 be a sample from G(N, M,,,1) with vertex sequence (b;);cn. Observe
that

1€EN

P(G(N,M,) E q(0,...,0— 1)) = P(G, = qlao, ..., a1))
and

P(G(N,Mn+l) ): Q(O, c. ,g — 1)) = P(Gn+1 ): Q(bg, c. ,bg,l)).
Let E, 10 be the event that for each ¢ such that 0 < ¢ < ¢ — 1, the projection
7(b;) € M,,. By our construction, the conditional probability

P(Gnﬂ = q(bo, ..., bi—1) | En+1,e)

satisfies

P(Gri1 = q(bo, - bi1) | Epsre) = P(Gn Eqlao, ... ai1)).
Therefore 6,41 <1 —P(E410).
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By construction of M, 1, we have

P(Epiy) = (1 _[Bln+1,n+ 1)|)e

’Mn+1|
Recall that at the end of the construction we observed that
Blut Ln D]y,
‘MnJrll
and so P(E, 1) > (1 —27™)% Using Bernoulli’s inequality, we obtain the bound
P(Epi10) > 1—¢27" and 80 0,41 < € 27", as desired. O

Let pa denote the distribution of the limit of <G(N7Mi>>ieN‘ Proposition 3.7
demonstrates that g is an So.-invariant measure on Stry, where L is the language of
graphs. We now show that pa, assigns measure 1 to the isomorphism class of M. We
begin with a combinatorial lemma.

Recall that for each j € N, we have defined ¢; € N to be one less than the number
of free variables in the quantifier-free formula ¢;. For each n, j € N, define

g = PG, M) b= (B) 50+ (6= 1),9) ).

Before proving our main bound on this quantity, we need a technical lemma.

Lemma 3.8. Let k € N and suppose 0 < C < 28, Then

o

[[a-c2)>@a-C277

i=k

Proof. By our hypothesis on C, each term of the product is positive. In particular, we
have

log(H(l - C27) = Zlog(l —C 279

By the concavity of the function log(1 — t), we have log(1 — t) > ¢ log(1 — )/t for
to >t > 0. Setting ty = C'27% and t = C 27 where i > k, we obtain

ilog(l —-C27h > icw‘ log(1 — C 27%)/(C27%)

= log(1—C 27" ZQ itk

= 2log(l—C 2" ).
Therefore [, (1 —C 27%) > (1 — C 27%)? by the monotonicity of log. O

Lemma 3.9. For all j € N,
lim 7, ; = 1.

n—o0
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Proof. By our enumeration of formulas ¢;, observe that for all n € N there is some
J = 1 such that 7, ; = 7,,0. Hence it suffices to prove the claim for all j > 1.

We may assume that j is large enough that £; < 2771 as each formula is enumerated
infinitely often, and ~,_ ; depends only on n and on ¢;, not on j.

Fix such a j > 1. As in the proof of Proposition 3.7, for n € N let GG,, be a sample
from G(N, M,,), and let (a;);en be the random sequence of vertices (with replacement)
chosen from M,, in the course of the sampling procedure.

Analogously, for n > j, define D, j, to be the event that for each i such that
0 <1 < ¢; — 1, the projection 7(a;) € M;_1. Recall that P(Ep,,) > 1 — ¢; 2" for
each h € N, and so

]P)(Dn,j,fj> > P<En,fj) ’ ]P)(En,ng) o ']P)(EJ}Q)
> (1—£; 27 D) (1 —¢; 272 (1 — g 2707,

Taking C'=¢; and k = j — 1 in Lemma 3.8, we obtain

o0

[Ta-¢27)=@—e27070p,

i=j—1
and so
P(Dnje,) > (1= £; 27U7D)2,
as each term in the infinite product is between 0 and 1.

Now let F, ¢, be the event that the elements ag, . . ., as,—; of M,, are distinct. Observe
that, because (M,);en is an unbounded sequence of graphs,

nh_)rlgo P(Fe) = 1.

Because of the way witnesses are chosen at substage (7, j), for n > j if events D,, ;,
and F, ¢, hold, then

G(N,M,) E (3y)e; (0--- (¢, = 1),y).
Therefore,
B(GON, M) E (B9 g0 (6= 1),9)) 2 B(Dys0,) - B(En).

For n > j, define ((n, j) to be the greatest k& < n such that ¢, = ;. We then have

P(GIN, Ma) = G50+ (6=1),9)) 2 P(Ducinnne,) - PlFrs)
> (1—¢; 27 €Dy PR .

Because each formula is enumerated infinitely often, lim, ., ((n,j) = co. Hence

lim P(G(N, Ma) = (39) 95(0-++ (6= 1)) ) = 1,

n—o0

as desired. 0

Proposition 3.10. The S -invariant measure pipg is concentrated on the isomorphism

class of M.
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Proof. For each j € N, we have

MM([[(H?/)SOJ'(O' (4 — 1),y)]]) =1,

by Lemma 3.9. Therefore, by the S..-invariance of pi¢, we have

um<[[(\ﬁ)(3y)soj (7, y)]]) =1,

where T is an /-tuple of distinct variables. But T consists solely of sentences of the
form (VZ)(3y)¢; (T, y). Hence pup is concentrated on the class of models of T". Because
T is Ny-categorical and M = T, the measure pp, is concentrated on the isomorphism

class of M. O

4. INVERSE LIMIT CONSTRUCTION

We now give the key technical construction of the paper. This will take a theory with
certain properties and produce a probability measure, invariant under permutations of
the non-constant elements in the underlying set, that is concentrated on the class of
models of the theory. This construction is a variant of the one in [AFP12] and will be
the crucial tool used in later sections.

4.1. Setup. Before providing the construction itself, we describe the main conditions
it requires. We begin by fixing the following languages, theories, and quantifier-free
types.

First let (L;);en be an increasing sequence of countable languages having no function
symbols, but possibly both constant and relation symbols, and let Lo, := |,y L, SO
that

1€EN

LoC Ly C Ly C--- C L.

Further assume that all constant symbols appearing in any L; are already in the lan-
guage Lg; call this set of constant symbols C'.

Now fix an increasing sequence (7T;);eny of countable pithy Il, theories that are
quantifier-free complete and satisfy T; € L, ,(L;) for each i € N. Let T, := U,y T3
so that

ThCTiCTy C--- CT.
For each 7 € N, let Q; = (q}> jen be any sequence of complete non-constant quantifier-

free L;-types that are consistent with 7; and that satisfy the following four conditions.
Let &} denote the number of free variables of ¢;.

(W) For each i,j € N and every sentence (VZ)(3y)¢(Z,y) € T; for which [7] = &},
there is some e; ;, € N such that ¢ = qéiw is a quantifier-free type with one
more free variable than q} and such that

= (vZ,y)(¢(T.y) = ¢(x))  and
= (vZ,) (6T ) = ¢ (T, ).
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(D) For each i, € N and variable y such that q} is a non-redundant quantifier-free
type satisfying

= (v, ) (4@, y) = Ny # 0),
ceC
where |Z|+1 = k;, there is some f; ; such that the quantifier-free type ¢ = q}i ;
has (k% + 1)-many free variables, is non-redundant, and satisfies

= (VZ,y, 2) (6 (T, 9, 2) = (6(T,9) A G}(T, 2))).
(E) For each i,j € N there is some j' € N such that
= (Y7) (4,7 (7) = ¢;(7)),
where |Z| = ki = ki
(C) For each i, j € N and quantifier-free type p such that
= (v7,) (q;(@) — p(w)),

where |Z| = k? and @ is a subtuple of variables of T with |@| equal to the
number of free variables of p, there is some h, € N such that ¢* := q}'Lp satisfies

= (Vo) (¢ (@) < p(w)).

Condition (W) ensures that for each quantifier-free type in @); and pithy I, sentence
in the theory T}, the sequence (); contains some extension of the quantifier-free type
that witnesses the formula.

Condition (D) requires that for every non-redundant quantifier-free type in @; and
every free variable of that quantifier-free type which it requires to not be instantiated by
a constant, there is some other quantifier-free type in @); that duplicates that variable.
In particular, by repeated use of (D), we can show that for any non-redundant qj- € Q;,
any h € N, and any k* <k such that

vz, ) (@7 = N\ N\ (= #0)
z€y ceC
where |Z| = k) — k* and [g] = k¥, there is an f;;,. € N such that the quantifier-free
type ¢° = q}_*'k* has (k; ; + h k*)-many free variables, and for all functions

G:{1,...,k*} = {0,... h},
we have

— i — 1 k*
=V, gy ) (@ i) = d @Y ),

where the y}” are new distinct variables, for 1 </ < k* and 0 < w < h.

In summary, ¢* is a quantifier-free type that duplicates, (h + 1)-fold, all variables of
q; Furthermore, for every tuple of variables from ¢° that contains exactly one duplicate
of each variable of q;., the resulting restriction of ¢* to those variables is precisely qj- with
corresponding variables substituted. We call such a ¢* an iterated duplicate. Recall
our assumption that each 7T} is quantifier-free complete, hence consistent, and that each
element of (); is consistent with T;. Therefore, as a consequence of iterated duplication,
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each T; must have models with infinitely many elements that do not instantiate constant
symbols.

Condition (E) says that for every quantifier-free type in @); and larger language, we
can find an extension of that quantifier-free type to that language.

Condition (C) says that the quantifier-free types of Q; are closed under implication.

There will be one further condition, which we will not always require to hold. How-
ever, when it does hold, it will guarantee that the construction assigns measure 0 to
every isomorphism class of models of the target theory.

(S) For some ¢ € N (called the order of splitting), every i € N, and every non-
redundant quantifier-free L;-type ¢; € (); with &k} > £, there is some e € N and
some quantifier-free L.-type ¢° € Q. with 2k§ many free variables, such that for
each 8: {1,...,k} — {0,1}, we have

0.1 0 1 0,.1 0 1 i (.51 B(kS)
E (Valzy .. .xk;xké)(qu(xlxl . xk;xk;) = gy Ty ),
where z{z1 - - - 29,2, is a tuple of distinct free variables, and for each iy, ..., i, €
J J

N such that 1 <43 <ip < --- < iy < k;, and each yo,71: {1,...,¢} — {0, 1},
there are distinct non-redundant pg, p; € (), such that for w € {0, 1},
= (Vajai .ol (¢ (el ) = puladr 2l ),
J J J J
We call ¢* a splitting of q;'» of order /.

If there is such an ¢ then we say that (Q;);en has splitting of quantifier-free
types of order /.

The intuition is that if (S) is satisfied then for every non-redundant quantifier-free
type in (J,oy @i in at least (-many free variables, there is some larger language in
which we can duplicate the quantifier-free type so that every quantifier-free subtype
with /-many free variables splits into at least two distinct quantifier-free types. In other
words, for each quantifier-free subtype with /-many free variables, if we consider all
ways in which it is duplicated (i.e., all the quantifier-free types where no two distinct
free variables are duplicates of the same variable), then that collection of quantifier-free
subtypes always has at least two elements. We will use this condition to show that any
given quantifier-free /-type is realized with probability 0.

We now turn to the construction itself.

4.2. Construction. The aim is to construct a continuum-sized measurable space with
certain properties. This will proceed via the inverse limit of a system of finite structures
in an increasing system of languages with associated measures. We will build this
system of structures in stages, each of which will interleave four tasks. The first task is
to enlarge the underlying set and update the measures so that they assign mass to the
new set in a way that is compatible with our earlier choices. The second task is to add
elements to ensure that ever more of our pithy Il; theory is realized, and adjust the
mass accordingly. The third task is to make sure the quantifier-free type of the entire
structure up until this point is duplicated. This will ensure that the end result is a
continuum-sized structure. Finally, the fourth task is to ensure that if there is splitting
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of quantifier-free types of some order ¢, then the appropriate quantifier-free type splits
as we enlarge the language. This will ensure that we obtain a continuum-sized structure
and a measure such that under a certain sampling procedure, the probability of any
particular quantifier-free type with /-many free variables being realized is 0, and hence
sampling from our structure will not assign positive measure to the isomorphism class
of any single structure.

The construction proceeds in stages indexed by n € NU {oo}. At each finite stage,
the structure we construct will have underlying set equal to the union of a fixed count-
able set C' of elements that instantiate the constant symbols with some finite sub-
set of N<¢ = J,.yN’. Recall the infinitary theory Too = U, T- in the language
Lo = UenLi- Fix an enumeration (v;(Z;,y))ien of all (quantifier-free)
L., (Lo )-formulas such that each formula occurs infinitely often, and such that for
each i € N,

(V) (3y)pi(Tir y) € To

and the formula ¢; has precisely (|7;| + 1)-many free variables; let &; denote |z;|. Let
(@7)ien be an enumeration with repetition of finite tuples of elements of N<“ such that
for all i € N, we have |a;] = & and for every @ € (N<*)%  there are infinitely many
J such that ¢; = ¢; and @; = @. Also fix an arbitrary non-degenerate probability
measure m* on N, i.e., such that no element has measure 0.

At the end of each finite Stage n € N, we will have constructed

a finite set X,, € N*" such that 7%(X,,) 2 X,,_1 (when n > 1),

a measure m, on X,

some natural number o, > a,_1 (when n > 1),

the complete non-redundant quantifier-free L, -type of X,, (chosen from Q,,,),
and

e an L, -structure &,.

In fact, Xy will be empty and oy = 0. We will define an Lg-structure Xj, whose
underlying set will be precisely a set of instantiations of the constant symbols in L.
Call this set of instantiations Cj.

For all n € N, the L, -structure &,, will have underlying set X,, U Cj, and hence is
determined by the quantifier-free L, -type of X,,. We call X,, the constantless part
of X,.

For convenience of various indices, Stage 1 will not add anything essential to those
objects constructed in Stage 0.

For n > 2 we will divide Stage n into substages n.i, indexed by i € {0,1,2,3}, each
devoted to a different task: 1.0 (adding mass), n.1 (adding witnesses), n.2 (duplication
of quantifier-free types), and n.3 (expanding the language).

At the end of Stage n.i, for i € {0, 1,2}, we will have constructed

e a finite set X,
e a measure m,, on X/,
e the complete non-redundant quantifier-free L,, ,-type of X! (chosen from

Qa, ), and
e an L, ,-structure X.

QAp—1
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As with the major stages, each L, _,-structure X! will have underlying set X' U C,
and hence will be determined by the quantifier-free L, ,-type of X!. We similarly
call X! the constantless part of X’. Because each Substage n.3 completes Stage n, we
write X,,, X,,, and m,, rather than X3 X3 and m3, respectively.
Furthermore, the sets will satisfy
o XVC X! C N2
e X2 C N !and n(X2) D X!, and
e X, CN?" and n(X,,) D X2
Finally, at the end of Stage oo, we will have constructed an L..-structure X, defined
by the quantifier-free L..-type of each finite subset of the infinite constantless part
X € N¥ of X, and a probability measure m., on X. The structure X,, may be
viewed as a sort of inverse limit of the structures X, for 0 < n < oo, with elements
“glued together” in accordance with the projection map .
We will also, at the end of each (sub)stage, verify that the new choices cohere with
those made earlier. Specifically, they will satisfy the following existence and duplication
properties for every j € N:

(&) If wjy1 € Lo, w(La,), then for every tuple 5 = 51, ..., sz of (not necessarily
distinct) elements from X; such that @77 C 5, and every /1,..., g € N2
such that s1"01, ..., Sjag gz € Xj41, we have

X b= Fy)ei(si, - s M) v)-

(2) For all g € N, all distinct sy,...,s, € N¥ all ¢1,...,¢, € N? and all quantifier-
free Lo,-types 7 with g-many free variables, if si,...,s, € X; and
81A€1, Ce Sg/\gg € Xj+1 then

X; =r(s1,...,5)
if and only if
Xj+1 ): 7’(81/\61, ey Sg/\gg).

Furthermore, for any s € X, we have

m;(s) = mj (7)1 (s) N Xj11)
and
lim m;(X;) = 1.

1—00
In this sense, mass is preserved via projection throughout the construction.
We now make the construction precise.

Stage 0: Defining the mass on N and the quantifier-free type of the constants.

We begin by defining the constantless part X, := 0. Let ag := 0. Let mg be the
unique measure on Xy, i.e., which satisfies mq(0)) = 0.

Choose an arbitrary element of )y having no free variables. Because T is quantifier-
free complete, there is only one such choice of quantifier-free Lo-type (up to equiva-
lence). This quantifier-free type describes which relations hold of any finite tuple of
elements instantiating constant symbols. In particular, this determines when two con-
stant symbols must be instantiated by the same element. Let Xy be an Lg-structure in



INVARIANT MEASURES VIA INVERSE LIMITS OF FINITE STRUCTURES 23

which Xj has this quantifier-free type, which amounts to choosing a set of instantiations
of the constant symbols, related in this way. Let Cj denote this set of instantiations,
and let % be the map that assigns each constant symbol of Ly to its instantiation in
Xo-

Stage 1: Same as stage 0.
Let X; := Xg =0, let a; := 1, and let m; be the unique measure on X;. Let X be
the unique L;-structure whose reduct to Lg is Aj.

Stage n.0 (for 1 < n < 00): Adding mass.

Having already determined the L,, ,-structure &,,_; and the measure m,,_;, we now
define an L, ,-structure X extending X, _;, and the associated measure m?. We
will define the structure X° by choosing its constantless part X° O X, ; and the
quantifier-free L,, ,-type of X°.

This substage adds new elements of N*"~1 to the support of m,,_; so as to ensure
that the eventual measure m., will be a probability measure.

If there is an z € X,,_; with o = n"b for some b € N?*~3 then let X := X,,_; be
the same L,, ,-structure, and let m?l = My

Otherwise let X?:= X, ; U {n"0*"3} and fix some ordering on it. Let
q(T,y) € Qa,_, be a quantifier-free type with |X2|-many free variables such that if

q* is the quantifier-free type of X, 1 (considered as an increasing tuple in the corre-
sponding ordering) in A),_;, then

= (VZ, ) (¢(T.y) = ¢ (T)).

Note that such a ¢ exists in Q,, , by condition (D). Define the quantifier-free
L, _,-type of XU in X? (where X0 is considered as an increasing tuple in that ordering)
to be ¢. Finally, let m2(2) = m,_1(2) for all z € X,,_; and m2(n"0?"~3) = m*(n),
where m* is the non-degenerate probability measure on N that we fixed before the
construction.

In summary, at stage n.0, if no element of X,,_; is a sequence beginning with n, then
we add one such sequence to our set, adjust the measure accordingly, and define the
larger quantifier-free type appropriately. Note that X,,_; is a substructure of X?, and
so the quantifier-free type of any tuple in X),_; is the same as its quantifier-free type
in X°. Furthermore, it is clear from the definition of m? that the measures m? and
my_1 agree on elements in the intersection of their domains.

Stage n.1 (for 1 < n < 0o0): Adding witnesses.

We now extend X? to X!, in particular defining the quantifier-free L, ,-type of its
constantless part X! DO X9 so as to ensure that certain subtuples have witnesses to
appropriate formulas, and define the associated measure m}.

Call ¢, (a,,y) valid for Stage n when the following hold:

b (an)(ﬂy)gon(fmy)_e U1§ign71 T, B
e At least one tuple b of elements of X? satisfies @, C b.
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If v, (@n,y) is not valid for Stage n then do nothing. Otherwise let V' be the set of all
b € X9 such that @, C b and

X E -\ eub.a).
deb
For each b € V, let n; € N be such that for all z € X? we have n; Z 2. Then let
X! = XU {n;"0%"=3 : b € V}. Fix some ordering of X2, and let ¢* be the quantifier-
free L, ,-type of X (considered as an increasing tuple under this ordering) in X?.
Choose a quantifier-free L, ,-type ¢ € Q,, , such that if ¢ holds of X! under some
ordering, then

(XA N end,n5"0°"?)
beV

holds, where X? occurs in its ordering. Note that the formula (VZ,)(3y)@n(Tn,y) is
in 7" and ¢* is consistent with 7. Hence by condition (W) we can always find such a
q. Declare ¢ to be the quantifier-free L,, ,-type of X! in X! (under that ordering).
In other words, we require that either there is a new witness or some witness already
existed.

Finally, let m}
nz 0" € X!\ XD

At this substage, we have ensured that if ¢, is valid (for stage n) then there are
witnesses in X! to (3y)p.(b,y) for all appropriate elements b of X°. We will use this
fact to verify property (&) at the end of stage n.

Again, X? is a substructure of X!, and so the quantifier-free type of any tuple in X°
is the same as its quantifier-free type in X!. Likewise, it is clear from the definition
of m! that the measures m! and m? agree on elements in the intersection of their
domains.

0

9 on X? and set m}(n;"0?"73) := m*(n;) for

agree with m .

Stage n.2 (for 1 < n < oo): Duplication of Quantifier-Free Types.

Having defined X! in the previous substage, we now define X2, in which we duplicate
the quantifier-free type of X! in X!, We will define the structure X? by choosing its
constantless part X? D X! and the quantifier-free L, ,-type of X2, We also define
the associated measure m2.

Let A, € N be large enough that if n balls are placed uniformly independently in
A,-many boxes, the probability of two or more balls landing in the same box is less
than 27",

Define

X2 = U {2 1z € X},
1<j<An
and fix an ordering of X2. Fix an ordering (z;)1<i<|x1| of the elements of X, and
let ¢ € Q,,_, be the quantifier-free type of this tuple. Choose a quantifier-free type
q* € Qa,_, such that whenever ¢* holds of X? (under its ordering) and any subset
{y; + 1 <1 <|X]}|} C X2 satisfies 7(y;) = x; for all i such that 1 <4 <|X}|, then

q((ihr<i<ixz))
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holds. Recall that our assumption (D) of duplication of quantifier-free types implies the
existence of iterated duplicates. Hence there is such a ¢*, as it is precisely an iterated
duplicate of q. Declare ¢* to be the quantifier-free type of X? (under its ordering) in
X2

Suppose that ¢ € N and sy,...,5, € X} are distinct. Further suppose that
l1,...,4, € N such that s;"y,...,s,"¢, € X2. Then note that for any quantifier-
free L,, ,-type r with g-many free variables

X Er(sy,. .., 8,)
if and only if
Xr? ): 7’(81/\61, cey Sg/\gg).
This is the analogue, for the situation of moving from substage n.1 to n.2, of property
(2).
Finally, for each z € X2, define m2(z) := m)(7(z))/A,. In other words, for each
y € X!, its mass is divided evenly between its A,-many extensions.

Stage n.3 (for 1 < n < 00): Expanding the Language.

Having defined X? in the previous substage, we now define X, itself, some o, > v, 1,
and the associated measure m,,. We will define by X, via its constantless part X,, D X2
and the quantifier-free L, -type of X,,. We do this in a way that ensures that if, for
some ¢ € N such that ¢ < |X2|, there is splitting of quantifier-free types of order
¢, then for the least such ¢, as we enlarge the language we split all non-redundant
quantifier-free types with /-many free variables.

Fix some ordering on X? and let p,_; be the quantifier-free L, ,-type of X2 (con-
sidered as an increasing tuple under that ordering) in X2
Case (a): If either there is no splitting of quantifier-free types of order ¢ for any
¢ € N, or there is a splitting, but the least such order ¢ is greater than |X?|, then let
Qp = a1 + 1, let X, := {20 : z € X2} and let p, € Q,, be any non-redundant
quantifier-free L,, -type with |X2|-many free variables such that

= (VZ) (pa(T) = Pu-1(7))

where || = | X?2|. We know that such a quantifier-free type exists by condition (E).
Then declare p, to be the quantifier-free L, -type of X,, (considered as an increas-
ing ordered tuple under the order induced from X?2) in X,. For z € X, define
my(z) == m?(n(z)), since every element has just one extension.
Case (b): If, however, there is splitting of some order, i.e., condition (S) holds, and
the least such order £ € N is no greater than | X2|, then let ¢* be some splitting of p, 1
of order £. Let a,, be the e € N such that ¢° is a quantifier-free L.-type.
Define

X, ={2"0 : z € X2} U {a" : x € X2}
and declare that ¢” is the quantifier-free L, -type of X,, in &, where X, is considered
as the tuple

.%1/\0, xl/\l, R ,$|X%|AO, Z‘\X%‘Al

where xy, ..., x2| is increasing in the chosen order of X2
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Finally, for each = € X,,, define m,,(z) := m?2(w(z))/2. In other words, each element

of X2 has its mass divided evenly between its two extensions. This concludes case (b).

Now, regardless of the case, we verify property (&) for stage n. Suppose that
g€ Nand sq,...,s, € X2 are distinct. Further suppose that ¢1,...,¢, € N, such that
s17, ..., 54"y € X,. Then note that for any quantifier-free L, ,-type r with g-many
free variables

X2 = r(s1,. .., 8,)
if and only if
X, Er(si, ... s,°,).
Note that this property, composed with the analogous property verified at the end of
substage n.2, guarantees that (Z) holds.

Finally, for n > 0 note that, by property (2), if ¢, € L4, w(La, ,), then for every
tuple s1,..., g, € X, with @, T (72(s1),...,7(Sja,|)), there is an element ¢ € X
such that

X, E on(m(s1), .o, T (Sjan|)s 1)
Hence if t* € (7%)71(t) N X,,, then

Xy | on(s1,- 05 Sjan)s t7).

This verifies property (&).

Stage oco: Defining the Limiting Structure.

To complete the construction, we define the L. -structure X, via its constantless
part X, and the quantifier-free L. -type of every finite subset of X.,,. We also define
the measure m,.

Let

Xoo ={z eN*: (VieN)(z|; € X;)},
and for each n € N and each y € X,, define

Mmoo ({7 € Xoo & 2fn = y}) = mau(y).

Consider X, endowed with the topology inherited as a subspace of N (itself under
the product topology of N as a discrete set). Then X, is the countable disjoint union
Uven Yo, where for each £ € N,

Y, :={("a : a e N¥ and ("a € X,.}

is a compact topological space having a basis of clopen sets, under the topology inher-
ited as a subspace of N*. Hence m, can be extended in a unique way to a countably
additive measure on X ..

For every j,n € N and every si,...,s; € X, there are some n’ > n and
t1,...t; € X,y such that for all distinct 7,¢" < j,

o t; = s;|on and
ol #ti.
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Let ¢ € Q,, be the quantifier-free L, -type such that

Xy =q(ty, ... t).
Then declare that

X Eq(s1,...,85)
holds. This choice of quantifier-free type is well-defined because of property (Z) at all
earlier stages. This ends the construction.

4.3. Invariant measures via the construction. We now verify properties of X,
and me, that will allow us to produce the desired invariant measure.

Proposition 4.1. The measure my on X 1S a non-degenerate atomless probability
measure.

Proof. The measures m,, for n € N cohere under projection and agree with m*, in the
sense that

Meo(Yy) = m*(n).
But m* is a probability measure, and so m., is as well.
For n € N and a € X,,, let

B, :={s€ Xy : s|l, =a}.

The collection of sets of the form B, form a basis for the topological space X.. Fur-
thermore, for alln € N and a € X,,,

Moo(Ba) = my(a) > 0.

Hence m, is non-degenerate.

For each n € N, define I, := max{m,(a) : a € X,,}; in substage n.2, we duplicate
every element of X,,_;, and so

Fn S Pn—l/z'
Consider a singleton {b} C X.,. Then
Moo ({b}) < moo(Bb|n) <Tr,

for each n € N, and so m.({b}) = 0. Hence m, is atomless. O

We will show that &, is an uncountable Borel model such that when we sample
countably infinitely many elements from X, independently according to the probability
measure My, the induced substructure is almost surely a model of T,.

Proposition 4.2. The structure X, is a Borel L., -structure.

Proof. Fix n € N. Let ¢ be a quantifier-free L,, -formula, and let ¢ be the number of
free variables of 1. Then define the set of its instantiating tuples:

U= {al---agEXoo . Xoo }:@D(al,...,ag)}.

Also define, for each n’ > n,

Pn’ = {al"'af 6AXvoo : Xn’ Izw(albn’?"'aafbn/)}
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and
I, = {a1 ceap € Xoo 1 oa; = ay iff a;|o = aj]on, whenever 1 <i<j < E}.

Note that for each n’ > n, both P, and I, are open sets. We then have

U= J(PvNIy).

n'>n

and so VU is an open set. As 1) was arbitrary, X, is a Borel L. -structure. ([l

A natural procedure for sampling substructures of X, using m., will yield the desired
invariant measure.

Because Tj is quantifier-free complete, all models of T, have the same number
of elements that instantiate constant symbols, and the theory of equality between
constants is fixed (as encoded in ).

Let p be an arbitrary atomless probability measure on X,,. We begin by describing
a sampling procedure that uses ;1 to determine an invariant measure p° on Stre, 1, :
First sample a countably infinite sequence of elements (z;);en from X, independently
according to p. If there exist distinct 7, j € N such that x; = z;, then declare that all
atomic relations hold among all tuples; however, this occurs with probability 0, as pu is
atomless. Otherwise, for each quantifier-free L.-formula 1, declare that

Y(ny,...,ng)
holds if and only if
X EU(Tpyy. ., Tny)

for all ny,...,ny € N, where ¢ is the number of free variables of ¢. The distribution
of this random L-structure is a probability measure on Stre, _; this is our desired
1°. (As with the measures described via sampling in Section 3, such probability mea-
sures are ergodic, as Kallenberg showed by extending the argument of Aldous [Kal05,
Lemma 7.35] to languages of unbounded arity in [Kal05, Lemma 7.22] and [Kal05,
Lemma 7.28 (iii)].) Note that p° is SQ-invariant, as (x;);ey is i.i.d. Because yu is
atomless, p° is concentrated on the class of structures with underlying set NU Cj that
are isomorphic to countably infinite substructures of X,.

Proposition 4.3. The S°-invariant probability measure mS, on Stre, 1., is concen-
trated on the class of models of T

Proof. By Proposition 4.1, the measure m,, is atomless, and so m_ is an S°-invariant
probability measure on Stry, ;. that is concentrated on the class of countably infinite
substructures of X.

Now let M be a sample from m2_, say via the mq.-i.i.d. sequence (z;);en of elements
of Xo. Fix an arbitrary n € T,. We will show that M = 1 almost surely. Because
n is pithy Il,, we may write it in the form (VZ)(Jy)y(Z,y) for some quantifier-free
L-formula ¢. Let ¢ = |Z| and let n € N be such that ¢ € L,,. Fix an arbitrary tuple
b:=by---b, € N. We must show that there is some d € N such that

M (b, d) as.
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Let b* be the random tuple m, - -~ xp,. Let j > n be any index of ¢ (i.e., such
that ¢ = ¢;) satisfying a; C b*. This is possible because of our choice of repetitive
enumeration.

By our construction in stage j.2, there is some e € X JZ such that

Xf = (T, |oj—2 - Ty, |25-2,€)  as.
As in the proof of Proposition 4.1, let
Be = {3 € Xoo : S’Qj,g = 6}.
By our construction, for any e* € B,,

Xoo E (2, - - 1p,,€7)  as.

However, my(B.) > 0, and so there is some h € N such that z;, € B, N M, almost
surely. Hence

M E=(bh) as.

Again by Proposition 4.1, the measure m., is non-degenerate. O

We now show that if the collection of quantifier-free types has splitting of some
order, the resulting construction assigns measure 0 to any particular isomorphism class
of models of the theory T,.

Theorem 4.4. Suppose that (Q;)ien has splitting of some order. Then there is an
S invariant probability measure on Stre, 1, that is concentrated on the class of models
of T and is such that no single isomorphism class has positive measure.

Proof. Let £ € N be least such that (Q;);eny has splitting of order £. Let m’ be the
S invariant probability measure obtained in Proposition 4.3. Define M to be the
collection of isomorphism classes of countably infinite models of T,,, to which m’ assigns
positive measure.

Suppose, to obtain a contradiction, that M # (). Then by the countable additivity of
m/, there can be at most countably many elements of M. Hence among the quantifier-
free L-types with /-many free variables, at most countably many are realized in some
structure in M. In particular, at most countably many non-constant quantifier-free
Loo-types with f-many free variables are realized in some structure in M. Then by
countable additivity, there must be some non-constant quantifier-free L.-type p with
(-many free variables that is realized in a positive fraction of models, i.e., such that

' ([EDp(E)]y,) > 0.

where |z| = £.
We then have

0< ' (IE2)p@),) = ' (U BOls) < 3 o' (D).

where the equality is because p is non-constant. Hence there is some ¢ € N such that
m/ ([p(t)],) > 0, by the countable additivity of m/.
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For every i € NU {oo}, define n; :== m/([p|L., (£)].. ). Because

)
Loy C L€ C L,

we have 7; > n; whenever 0 <17 < j < oo.
Let g > ¢ be arbitrary. We will show that

g <2794+ (1—-2797"

This will imply that 7., < inf;(1—27)% = 0, and so m/([p(f)]4,) = 0, a contradiction.

There are two (overlapping) ways that an /-tuple of elements of X, sampled inde-
pendently according to m’ can fail to satisfy p| La,: €ither (1) the restriction of the tuple
to N29 satisfies a redundant quantifier-free type, in which case the tuple might not sat-
isfy L., , or (2) its restriction to N?¢ is non-redundant but satisfies some quantifier-free
type other than p\Lag.

By our choice of A, in stage ¢.2, we know that for any assignment of mass to X ;,
the probability of an independently selected ¢-tuple having two elements selected from
the same element of X 5 is no more than 279, as g > ¢. Hence the probability that (1)
occurs is bounded by 279.

Because the mass of every element is split evenly between those elements descending
from it via iterated duplication, the probability that a given non-redundant ¢-tuple of
Xg2 is selected independently according to mfl is 2¢ times the probability that any of
such duplicated elements are selected independently according to my,.

Let ¢, be the probability that a given /(-tuple, independently selected from X,
according to m,, has quantifier-free type p| L., conditioned on the fact each element of
the (-tuple is distinct (i.e., (, is a bound on the probability that (2) occurs, so that
ng < 2794 (,). By the splitting of quantifier-free types in stage ¢.3, we know that for
every (-tuple in Xg there are at least two quantifier-free L, -types of duplicates of the
(-tuple.

Hence we have

<=2 < 1—27y.
In total, we have n, <279 + (1 —274)97¢, O

5. APPROXIMATELY Ng-CATEGORICAL THEORIES

In this section, we introduce several conditions on first-order theories that together
allow us to apply Theorem 4.4. These will give us an invariant probability measure that
is concentrated on the class of models of a theory, but does not assign positive measure
to any single isomorphism class of models. We then give examples of first-order theories
satisfying these conditions.

Key among these conditions is a property that we call approrimate Ry-categoricity.

Definition 5.1. Let L be a countable language. A first-order theory T' C L, (L) is
approximately N-categorical when there is a sequence of languages (L;)ien, called
a witnessing sequence, such that

o [; C Ly forallieN,

o L =;en Li, and
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o I'N L, (L;) is Ro-categorical for each i € N.

In particular, any approximately Ng-categorical theory is the countable union of
Ng-categorical first-order theories (in different languages).

We now give criteria under which the class of models of an approximately
No-categorical theory admits an invariant probability measure that assigns measure
0 to any single isomorphism class of models.

Recall the notion of a pithy Il expansion from §2.2. Note that any model of a
first-order L-theory T has a unique expansion to a model of its pithy Il; expansion.
Furthermore, any invariant measure concentrated on a Borel set X C Stry can be
expanded uniquely to an invariant measure concentrated on

{M* € Strp,, : M|, € X}.

Lemma 5.2. Let L be a countable language, and suppose that T is an approrimately
No-categorical Ly, ,(L)-theory with witnessing sequence (L;);en. Then the pithy Il ex-
pansion T of T is also approximately Wq-categorical.

Proof. For each i € N, the L;-theory T'N L, ,(L;) is Ro-categorical by hypothesis. For
each i, let L} be the language of the pithy Il expansion T} of T'N Ly, ,(L;). Then
each T} is Wy-categorical. Note that T N L, ,(Lf) = T for each i € N, and (L});en
is a nested sequence whose union is the language of T*. Hence T™ is approximately

No-categorical with witnessing sequence (L7);en. O
The following result is now straightforward from Theorem 4.4.

Theorem 5.3. Let L be a countable relational language, and suppose that T is an
approzimately No-categorical L, ,,(L)-theory with witnessing sequence (L;);en. For each
1 €N, let Q; be any enumeration of the quantifier-free L;-types that are consistent with
TNLyw(L;). Further suppose that

e for each i € N, the age of the unique countable model (up to isomorphism) of
TN Ly,u,(L;) has the strong amalgamation property, and
o the sequence (Q;)ien has splitting of some order.

Then there is an Ss-invariant probability measure on Stry that is concentrated on the
class of models of T' but that assigns measure 0 to each isomorphism class of models.

Proof. By Lemma 5.2, the pithy II; expansion T of T" is approximately Nj-categorical.
Note that for each i € N, every element of (); is consistent with the pithy I, expansion
of TN L, .(L;). We may therefore run the construction of §4.2, under the assumption
that conditions (W), (D), (E), and (C) hold of (Q;)ien. Under the further assumption
that (S) holds of (Q;):en, we may apply Theorem 4.4 to obtain an invariant measure
on Strz,. that is concentrated on the class of models of 7™ but that assigns measure
0 to each isomorphism class. The restriction of this invariant measure to Str; will
give us an invariant measure with the desired properties. We now show that these five
conditions hold of (Q;);en.

Condition (D) follows from our first hypothesis, and (S) from our second.

Conditions (E) and (C) hold of (Q;);en because for each ¢ € N, the set (); contains
every quantifier-free L;-type that is consistent with 7'M L, ,,(L;).
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Finally, we show condition (W). Note that any pithy ITy sentence
(vVz)Fy)v (T, y) €T

is an L, -formula for some n € N. Hence as @, is consistent with T'N L, ,(L,,), for any
quantifier-free L,-type ¢ € @, there is some ¢ € Q),, extending ¢ such that for every
tuple Z of free variables of ¢ having size |Z|,

= (Vi) (¢' (@) = ) (3, v))
holds, where |w| is the number of free variables of ¢’. Therefore condition (W) holds

of (Qi)ien. O

In particular, a theory satisfying the hypotheses of Theorem 5.3 is not itself
No-categorical, as it must have uncountably many countable models. We now use
this theorem to give examples of an invariant measure that is concentrated on the class
of models of a first-order theory but but that assigns measure 0 to each isomorphism
class of models.

5.1. Kaleidoscope theories. Here we show a simple way in which a Fraissé limit
whose age has the strong amalgamation property gives rise to an approximately
No-categorical theory, which we call its corresponding Kaleidoscope theory, whose
countable models consist of countably infinitely many copies of the Fraissé limit com-
bined in an appropriate way. Furthermore, we show that if such a Fraissé limit satisfies
the mild condition that for some finite size its age has at least two non-equal structures
of that size (not necessarily non-isomorphic), then its Kaleidoscope theory satisfies the
hypotheses of Theorem 5.3.

Definition 5.4. Suppose L is a countable relational language. Let (L) jen be an infinite
sequence of pairwise disjoint copies of L such that LY = L, and for i € N, define
Li = UOSjSi L.

Lemma 5.5. Let L be a countable relational language, and let A be a strong amal-
gamation class of L-structures. For each i € N, define A; to be the class of all finite
L;-structures M such that for 0 < j < i, the reduct M|p; (when considered as an
L-structure) is in A. Then each A; is a strong amalgamation class.

Proof. Each A; satisfies the strong amalgamation property: Suppose M, N € A; have
a common substructure @ € A;. For each j such that 0 < j < i, let X7 be a strong
amalgam of M|;; and N|;; over O|;;. Because X, ... X are in disjoint languages
and have the same underlying set, there is an L;-structure X on this underlying set
such that for 0 < j <4, we have X|;; = X7. Hence X € A; is a strong amalgam of
M, N over O.

Each A; is a class containing countably many isomorphism types, for which the
hereditary property holds trivially. Further, the joint embedding property holds by a
similar argument to that above. Thus each A; is a strong amalgamation class. 0]

Definition 5.6. Using the notation of Lemma 5.5, for each i € N, let T; be the theory

of the Fraissé limit of A;, and notice that T; C T;1. The theory Ty, := UieNTi i the
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language Lo := U;eny Li = UjGN L7 is therefore consistent. The theory Ty is said to
be the Kaleidoscope theory built from A.

Proposition 5.7. Let L be a countable relational language, and let A be a strong
amalgamation class of L-structures. Let T, in the language L, be the Kaleidoscope
theory built from A, as above. Then T, is approzimately No-categorical.

Furthermore, suppose that for some n € N, the age A has at least two non-equal
elements of size n on the same underlying set. (Note that we do not require these
elements to be non-isomorphic.) Then there is an So-invariant probability measure on
Strie that is concentrated on the class of models of T, but that assigns measure 0 to
each isomorphism class of models.

Proof. For each 1 € N, let A; be as defined in Lemma 5.5; then A; is the age of a
model of T;, which is an Ny-categorical L;-theory. Therefore T, is an approximately
No-categorical Lo.-theory with witnessing sequence (L;);en-

We will apply Theorem 5.3 to obtain the desired invariant measure. We must show
its two hypotheses: the strong amalgamation property for the age of each TooNL,, ,(L;),
and that (Q;);en (as defined in Theorem 5.3) has splitting of some order.

For any ¢ € N, because A; is the age of the unique model of T; = T, N L, ,,(L;), we
may apply Lemma 5.5 to see that A; is a strong amalgamation class as well.

We now show that (Q;)ien has splitting of order n. Fix j € N, and let ¢ € Q); be
a non-redundant quantifier-free L;-type with k-many free variables, for some k£ > n.
It suffices to find, for some j' > j, a quantifier-free type ¢* € () with free variables
7 =29, 2},...,2% 21 such that the restriction ¢* to L; is an iterated duplicate of ¢,

and for any 2n-tuple y; - - - Yn21 - - - 2, of distinct free variables of ¢%, we have

Floson 7 Clorons

which ensures that ¢ is a splitting of g. We construct ¢* in the following manner.

In languages L°, ..., L7, the quantifier-free type ¢* describes an iterated duplicate
of ¢; each of the remaining languages L', ... L7 corresponds to a particular way of
choosing a 2n-tuple of variables from the 2k-tuple T, and describes a pair of different
n-element structures on this 2n-tuple. Let ¢* be the quantifier-free L;-type with free
variables T that is an iterated duplicate of ¢q. Let By and B; be two non-equal elements
of A of size n on the same underlying set {0,...,n — 1}, and let pg,p; € Qp be
quantifier-free L-types such that

for i € {0,1}. By the joint embedding property of A, let p € @y be any quantifier-free
L-type with 2n-many free variables vy, ..., v,,w1,...,w, such that
p(v, W) = po(v) A p1(w),

where U := vy -+ -v, and W = w; - - - Wy,
Enumerate all 2n-tuples of distinct variables of Z. Assign each such tuple uw a distinct
value

jwel+1,...,7],
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where j' := j+(2k)(2k—1) - -- (2k—2n+1). For each such tuple 7, choose a quantifier-
free L-type ¢z with free variables T such that

= (v7) (¢(@) — p(@)).

Let ¢* be a quantifier-free L;-type with free variables T that implies ¢*(T) and that also
implies, for each such tuple %, that ¢ (Z) holds, where ¢ describes in language L/®
what ¢z describes in L. Note that we can find such a ¢ because the restrictions of Th,
to each copy of L do not interact with each other. Finally, because p(v,w) # p(w,v),

for any 2n-tuple y; - - -y, 21 - - - 2, of distinct free variables of ¢%, we have that

qu|y17-~~7yn # qu|21,...,zn-
Therefore (Q;);en has splitting of order n. =

A key example of this construction is provided by what we call the Kaleidoscope
random graphs, which are the countable models of the Kaleidoscope theory built from
the class of finite graphs (in the language of graphs). There are continuum-many
Kaleidoscope random graphs (up to isomorphism). Each Kaleidoscope random graph
G can be thought of as countably many random graphs (i.e., Rado graphs), each with
a different color for its edge-set, overlaid on the same vertex-set in such a way that
for every finite substructure F' of G and any chosen finite set of colors, there is an
extension of F' by a single vertex v of G satisfying any given assignment of edges and
non-edges in those colors between v and the vertices of F'.

The invariant measures provided by Proposition 5.7 are fundamentally different from
those obtained in [AFP12]. No measure provided by Proposition 5.7 is concentrated
on the isomorphism class of a single structure, nor is any such measure concentrated
on a class of structures having trivial definable closure. To see this, consider such a
measure, and suppose n € N is such that the age A has at least two elements of size
n. Then for a structure sampled from the invariant measure, with probability 1 the
tuple 0, ...,n—1 has a quantifier-free type different from that of every other n-tuple in
the structure. Hence the structures sampled from such a measure almost surely do not
have trivial definable closure. As a consequence of this and the main result of [AFP12],
for almost every structure sampled from this measure, there is no invariant measure
concentrated on the isomorphism class of just that structure.

5.2. Urysohn space. The Urysohn space U is the universal ultrahomogeneous Polish
space. In other words, up to isomorphism (i.e., bijective isometry), U is the unique
complete separable metric space that is universal, in that U contains an isomorphic
copy of every complete separable metric space, and ultrahomogeneous, in that every
isomorphism between two finite subsets of U can be extended to an isomorphism of the
entire space U.

Although Urysohn’s work predates that of Fraissé [Fra53], his construction of U
can be viewed as a continuous generalization of the Fraissé method. Husek [Hus08]
describes Urysohn’s original construction [Ury27] and its history, and Katétov’s more
recent generalizations [Kat88]. For further background, see the introductory remarks in
Hubicka-Nesetfil [HNO8] and Cameron-Vershik [CV06]. For perspectives from model
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theory and descriptive set theory, see, e.g., Ealy-Goldbring [EG12], Melleray [Mel08|,
Pestov [Pes08], and Usvyatsov [Usv08].

Vershik [Ver02b], [Ver04] has demonstrated how Urysohn space, in addition to being
the universal ultrahomogeneous Polish space, also can be viewed as the generic Polish
space, and as a random Polish space. Namely, Vershik shows that U is the generic
complete separable metric space, in the sense of Baire category, and he provides sym-
metric random constructions of U by describing a wide class of invariant measures
concentrated on the class of metric spaces whose completion is U. As with the con-
structions in [PV10] and [AFP12|, these measures are determined by sampling from
certain continuum-sized structures.

Here we construct an approximately Rp-categorical theory whose models are those
countable metric spaces (encoded in an infinite relational language) that have Urysohn
space as their completion. Hence our invariant probability measure concentrated on
the class of models of this theory can be thought of as providing yet another symmetric
random construction of Urysohn space.

Before describing the theory itself, we provide a relational axiomatization of metric
spaces using infinitely many binary relations, where the distance function is implicit
in these relations. Let Lyg be the language consisting of a binary relation d, for every
q € Q>. Given a metric space with distance function d, the intended interpretation
will be that d,(x,y) holds when d(z,y) < q. More explicitly, we have, for all ¢,r € Qxo,

o (Vz)(Vy) (dg(x,y) — dp(x,y)) when r > g,

o (Vx)(Vy) (dq(x,y) « dq(y,x)),

o (Vz)(Vy)(V2) ((dg(x,y) Adp(y, z)) = dgyr(, 2)), and
o (V) do(x,x).

Let Tyis denote this theory in the language Lys.
The following result is immediate.

Proposition 5.8. For every metric space S = (S,dg), the Lygs-structure Ms with
underlying set S and sequence of relations <d$/ls>q€@20 defined by

'S (z,y) if and only if ds(x,y) <q

15 a model of Tys.
Conversely, if N is a model of Tyis with underlying set N, and

dy(z,y) == inf{g € Qs : N [=d,(z,y)},
then Py = (N,dy) is a metric space.

We will use the maps S — Mg and N — Py that are implicit in Proposition 5.8
throughout our discussion of Urysohn space.

Note that when a model N of Ty further satisfies, for each ¢ € Qx, the infinitary
axioms

o (Vx) ((/\ dp($,y)) — dq(x,y)) and

o (Vz)(Vy) (do(z,y) = (z =y)),
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then N’ = M for some metric space S. However, we will not be able to ensure that
these axioms hold in our construction, each stage of which involves a language that
has only a finite number of relations of the form d,,.

Proposition 5.9. For any finite sublanguage L of Lyis, every model of the restriction
Tus N Lyw(L) of Tus can be extended to a model of Tys.

Proof. Let L be a finite sublanguage of Lys, and let A/ be a model of Tyys N L, (L)
with underlying set N. Define

QL = {QGQZO : dq GL}

Let p := max Q. For every pair of distinct elements z,y € N, define

Op(x,y) = min(2p, inf{g € Qr : N'|=dy(,9)}),
and for all x € N set
Oy (z, x) = 0.
Finally, define
on(x,y) := inf {0x(x, 21) + Ope(21, 22) + -+ On(2n,y) : n>1and 21,...,2, € N}

Although (IV, dx) need not be a metric space, the Lyg-structure My s,), given by the
map defined in Proposition 5.8, is a model of Tysg. By construction, if
N E dy(z,y), then dy(x,y) < ¢q. However, if N' = —d,(z,y), then by the triangle
inequality dp(x,y) > q. Hence (N,dyr) is consistent with the above “intended inter-
pretation” of the relations in N. In particular, My, is an expansion of N to Lys
that is a model of Tys. O

We now describe an important class of examples of countable metric spaces whose
completions are (isomorphic to) the full Urysohn space.

Definition 5.10. Let D be a countable dense subset of Ry. Consider the class . of
finite  metric spaces S whose non-zero distances occur in D, and let
F ={Ms : § € FL}. Note that F is an amalgamation class. Define DU to be
Py, where N is the Fraissé limit of % .

It is a standard result that any such DU is a metric space whose completion is U.
The particular case QU has been well-studied, and is known as the rational Urysohn
space.

We now extend Tyis to an Lys-theory Ty, whose countable models will be precisely
those Lyg-structures N for which the completion of Py is isomorphic to U. We will
work with finite sublanguages of Lyg, rather than all of Lyg, because there is no
(countable) Fraissé limit of the class of finite models of Tys; in particular, there are
continuum-many non-isomorphic finite models of Tys, even of size 2. On the other
hand, in every finite sublanguage L of Ly, there is a Fraissé limit of the countably
many (up to isomorphism) finite models of Tyg N L, (L).
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Definition 5.11. Let L be a finite sublanguage of Lyis. Note that the class of finite
models of Tyis N Lo, (L) is an amalgamation class. Let T be the L., (L)-theory of the
Fraissé limat of this class, and define

Ty == J{T} : finite L C Lys}.
Proposition 5.12. The theory Ty s consistent.

Proof. Consider the Lyg-structure Mgy. It is a Fraissé limit of the class of those
finite models N of Tyig for which Py is a metric space with only rational distances.
By Proposition 5.9, and as Q is dense in R, for any finite sublanguage L of Ly, the
Fraissé limit of the class of finite models of Tyg N L, (L) is isomorphic to Mqu]L.
Hence Mgylz is a model of T(?. Therefore Mgy is a model of Ty, and so Ty is
consistent. ]

Note that by the above proof, for any countable dense subset D C R, the
Lys-structure DU is a model of T;. As these are all non-isomorphic, Ty has continuum-
many countable models. Also note that for any finite sublanguage L of Lys and dense
D,E C R, the L-structures Mpy|, and Mgy|, are isomorphic (and are both Fraissé
limits as in the above proof).

Theorem 5.13. Let S = (S,ds) be a countable metric space. Then Mg is a model of
Ty if and only if the completion of S is isomorphic to U.

Proof. First suppose that the completion of § is isomorphic to U. Without loss of
generality, we may assume that & C U and that S is dense in U. We will show that
Mg is a model of Ty;.

Let L be any finite sublanguage of Ly, and suppose that

(VT)(I)e(T,y) € Ty N Luw(L).
Because Ty N L,,(L) has a pithy II, axiomatization, it suffices to show that
(VZ)(Jy)e(Z,y) holds in M.

Fix some @ € M where |a| is one less than the number of free variables of ¢, and let
q be the quantifier-free L-type of @. We will show that there is a witness to (Jy)¢(a, y)
in M,s.

Because Ty implies the theory of the Fraissé limit of the class of finite L-structures,
there is some quantifier-free L-type ¢'(Z,y) extending ¢(Z) (where || = |a|) that is
consistent with both ¢(Z,y) and Tys N Ly, (L).

Now, U is universal for separable metric spaces, and so there is some tuple ¢f € U
such that ¢’ holds of M¢ (under the corresponding order of elements), where C is the
substructure of U with underlying set ¢f. As U is ultrahomogeneous and ¢ is the
quantifier-free type of @, there must be an automorphism o of U such that o(¢) = @.
Define b := o(f). Then ¢ holds of Mp (in the corresponding order), where B is the
substructure of U with underlying set ab.

But no quantifier-free L-type can ever completely determine the distance between
any two distinct points, as L is finite. Hence there is some ¢ > 0 such that ¢ also
holds of M4 (in the corresponding order) whenever A is any finite (|a| + 1)-element
substructure of U that can be put into one-to-one correspondence with @b in such a
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way that each element of A is less than € away from the corresponding element of @b
and from no other. By assumption, S is dense in U, and so there is some ¥’ € S such
that dy(b,t’) < e. Hence Mg |= ¢/(a@,b'), and so Ms = (@, b’), as desired.

Conversely, suppose that § is a countable metric space such that Mg is a model of
Ty. We will show that the completion U of S is isomorphic to U.

We do this by showing that for every finite metric space A with underlying set
A C U and metric space B extending A by some element b (not necessarily in Uf), there
is some b’ € U such that the metric space induced (in &) by A U {b'} is isomorphic
to B. From this it follows that if ¢ is an isomorphism from A to another submetric
space A" of U, then for every ¢ € U, there is some ¢ € U such that the function that
extends o by mapping ¢ to ¢ is also an isomorphism of induced metric spaces. By a
standard back-and-forth argument, this implies the universality and ultrahomogeneity
of U. Hence U is isomorphic to U, as U is the unique (up to isomorphism) universal
ultrahomogeneous complete separable metric space.

Let A and B be as above, and suppose A = {ag, ..., a,-1}, where n = |A|. Let U*
be any metric space extending U by b. and define

5 = du- (aj? b)
for 0 < j < n. Let (L;);eny be an increasing sequence of finite sublanguages of Lyg
such that for each ¢ € N, the language L; contains enough symbols of the form d,
to imply that whenever two finite models of Ty, both of diameter less than twice
that of B, satisfy the same quantifier-free L;-type (in some order), then each pairwise
distance in the first structure is within 2-¢*+% of the corresponding distance in the
second structure. For each j such that 0 < j <n—1, let (aj-)ieN be a Cauchy sequence
in S that converges to a; with
ds(aj-, a;-“) < 9 (i+3)

for i € N.

Consider the inductive claim that for h € N we have defined by - - - b, € S that satisfy

ds(bi, bi1) <27
for ¢« < h, and
|ds(al, b;) — ;] <270+,
for0<j<mn-—1landi<h.

If this claim holds for all A € N, then (b;);eny is a Cauchy sequence in S, which
therefore must converge to an element b’ € U. Furthermore, dy(a;,0') = ~; for
0 < j < n-—1, and so the metric space induced by A U {0’} is isomorphic to B,
as desired.

We now show the inductive claim for h + 1. Because

}du*(a?, b) — 7j| < 2= (h+2)

for 0 < j < n —1, and since Mg|g, ., 18 the Fraissé limit of the finite models of
Tvus N Lyw(Lnt1), we can find a by € S satisfying

|ds(al, bpi1) — ;] <270
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for 0 < j <n— 1. We may further assume that ds(by, by, 1) < 27", as there is a finite
metric space containing such a by, that extends the one induced by a?, ..., a" |, b.
Now, for 0 < j < n — 1, we have dg(a;‘,a?“) < 27 “and so ds(al, a;) < 27,
hence

|ds (™, bygr) — 5] < 270,

and so by, satisfies the inductive claim. 0

Although Ty; is not itself Ry-categorical, as shown by the examples DU, it is approx-
imately Ny-categorical. Let a: N — Q¢ be a bijection, and for each 7 € N define the
finite sublanguage of Lyg to be

Proposition 5.14. The theory Ty s approximately Ng-categorical with witnessing se-
quence (L;)ien.

Proof. For every i € N, the restriction Ty N Ly, (L;) is the theory of the Fraissé limit
of all finite models of Ty N L, ,(L;), hence Ry-categorical. O

Proposition 5.15. The theory Ty and witnessing sequence (L;);en satisfy the assump-
tions of Theorem 5.5. Hence there is an S -invariant probability measure my on Strr,
that is concentrated on the class of models of Ty and that assigns probability 0 to each
1somorphism class.

Proof. For each i € N, the countable model of Ty N L, ,(L;) is isomorphic to Mqu]y, -
Its age has the strong amalgamation property, because the age of Mgy has the strong
amalgamation property.

For each ¢« € N, let @); be the set of quantifier-free L;-types that are consistent with
Ty N Ly w(L;). We will show that (Q;);eny has splitting of order 2. Let 7 € N and
q € Q. We show that there is some j’ > j such that each quantifier-free L;-type with
two free variables has a splitting in the language L.

Let k be the number of free variables of q. There is an iterated duplicate ¢’ of ¢ having
2k-many free variables, and there is some finite metric space & whose positive distances
are distinct and such that ¢’ holds of Ms (under some ordering of the elements of Mg).
Let j* > j be such that

{a(i) - 0<i<j'}
partitions Q so that each part contains at most one positive distance occurring in S.
Let ¢* be the quantifier-free L;-type of Ms. Then ¢* is a splitting of ¢ of order 2. [

As with the Kaleidoscope random graphs above, the measure my cannot be obtained
via the methods in [AFP12]. This is because almost every sample from m has non-
trivial definable closure, as we now show. Let N be a structure sampled from my;, and
consider its corresponding metric space Py = (N,dy). Then with probability 1, for
(i,7), (7', 5) € N? satisfying ¢ < j and 7/ < j', we have

dN(Za]) 7£ d/\/(ilvj/)
whenever (i, ) # (i, 5').
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Also my does not arise from the standard examples of the form DU, as for any two
independent samples Ny, NV; from my;, the sets of real distances

{dn, (4, 7) : i,j € Nand i # j}

for w € {0, 1} are almost surely disjoint (and so any two independent samples from my;
are almost surely non-isomorphic — as we already knew). As a consequence, a sample
N is almost surely such that Py is not isometric to DU for any countable dense set
D CR,.

6. G-ORBITS ADMITTING (G-INVARIANT PROBABILITY MEASURES

In this section we characterize, for certain Polish groups G, those transitive Borel
G-spaces that admit G-invariant measures. In particular, we do so for all countable
Polish groups and for countable products of symmetric groups on a countable (finite
or infinite) set. Throughout this section, let (G, -) be a Polish group.

6.1. Sy-actions. For a countable first-order language L, recall that Stry is the space
of L-structures with underlying set N, with ®: S, x Str;, — Stry, the logic action of
S on Strp by permutation of the underlying set.

Also recall that for any formula ¢ € L, (L) and any ¢4, ..., ¢, € N, we have defined
the collection of models

lo(ty, ..., 0)] == {M e Strp : MEp(ly,....0)}.
The following is an equivalent formulation of the main result of [AFP12].

Theorem 6.1 ([AFP12]). Let (X, 0) be a transitive Borel Sy -space, and suppose that
t: X — Stry, is a Borel embedding, where L is some countable language. Note that the
image of v is the So-space

({M e Strp, : M= M*} ®;)

consisting of the orbit in Strp of some countably infinite L-structure M* under the
action of ®. Then X admits an Sy -invariant probability measure if and only if M*
has trivial definable closure.

The following well-known result will be useful in our classification of transitive Borel
Soo-spaces admitting S..-invariant probability measures.

Theorem 6.2 ([BK96, Theorem 2.7.3]). Let L be a countable language having relation
symbols of arbitrarily high arity. Then (Strp, ®p) is a universal Borel Su,-space.

Note that by Theorem 6.2, for any transitive Borel S.-space (X, o), we can always
find an embedding X — Strp, where L is as in Theorem 6.2. Hence Theorem 6.1
provides a complete characterization of those transitive Borel S.-spaces admitting
Sso-invariant probability measures. The main result of this section, Theorem 6.11, is
a generalization of Theorem 6.1 to the case of invariance under certain products of
symmetric groups.
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6.2. Countable G-spaces. We now characterize, for countable groups G, those tran-
sitive Borel GG-spaces admitting G-invariant probability measures.

Lemma 6.3. Let (X,0) be a finite Borel G-space. Then (X, o) admits a G-invariant
probability measure.

Proof. The counting measure py, given by px(A) = |A|/|X]|, is G-invariant. O

Corollary 6.4. Suppose G is finite. Then every transitive Borel G-space admits an
wmvariant probability measure.

Proof. Because G is finite, every transitive Borel G-space is also finite. By Lemma 6.3,
every such G-space admits a G-invariant probability measure. ([l

Lemma 6.5. Let (X, 0) be a countably infinite transitive Borel G-space. Then (X, o)
does not admit a G-invariant probability measure.

Proof. Suppose px is a G-invariant probability measure on (X, o). By the transitivity
of X, for all z,y € X we must have ux({z}) = px({y}). Let a := pux({z}). As X is
countable and px is countably additive, we have

1= px(X) = ZNX({x}) = Za.

But this is impossible as X is infinite, and so for any non-zero « the right-hand side is
infinite. 0]

Corollary 6.6. Suppose G is countable. Then a transitive Borel G-space X admits a
G-invariant probability measure if and only if X is finite.

Proof. As GG is countable and X is transitive, X must be countable. The conclusion
then follows from Lemmas 6.3 and 6.5. O

6.3. Products of symmetric groups. We now consider those groups G that are a
countable product of symmetric groups on countable sets. For such G, we will char-
acterize those transitive Borel G-spaces that admit a G-invariant probability measure,
using the following standard result from descriptive set theory.

Recall the definition of (Str/L\;‘?L, ®210) from §2.5.3.

Theorem 6.7 ([BK96, Theorem 2.7.4)). Let L be a countable language and let Ly be
a sublanguage of L such that L\ Ly contains relations of arbitrarily high arity. Let
My € Strr,. Then Aut(My) is a closed subgroup of S, and (Str/L\g?L,@)/LMO) is a
universal Aut(M)-space.

Note that the Aut(Mg)-orbit of any structure M* € Stré‘;‘?L is of the form
Orbpr,(M*) := {M € Str}!%, : M= M},

We will be interested in the case when L is a unary language, i.e., consists entirely of
unary relations.

For completeness, and to fix notation for later, we now recall basic facts about the
relationship between universal G-spaces and structures in a given language, when G is
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the product of symmetric groups. For the remainder of the section, let g, ¢4, ..., l
be finite or countably infinite, define
Goo = S and
Gin == [ S,
neN

and let G := G4 X Ggy.
Define the countable language

Lo ={U":1<i<te} U | J{UF 1<i<t,} U {Vie, Vin)s
neN
consisting of unary relation symbols. Consider the theory T, C L, (L¢) defined by
the axioms
o (Vo) (Up°(x) AUX(x)) whenever 1 <i < j < [y,
(UMx) AUM(x)) for all n,m € N and 4,j such that 1 < i < /, and
,, for which (i,n) # (j,m),
o ( () < V,en \/1§i§€n Ui”([[))’
o (Vo) (Voo(2) ¢ Vicicy, U (2)),
o (Vr) (Vﬁn(:c) YRS ﬂVoo(x)),
e for all ¢ such that 1 <i < /., the set {x : U(z)} is infinite, and
e for all n € N and i such that 1 <1i </, we have [{z : U'(z)}| = n.

These axioms are consistent; in particular, they can be realized by any Lg-structure
partitioned by the U-relations for which each U relation is infinite, each U™ relation
has size n, the relation V, is the union of all U*-relations, and V4, is the union of all
U™ relations.

Fix some Ag € Strp, that is a model of Ti.  For each U-relation, write

U:=UA = {z € A: Ag |= U(z)}, and similarly for each V-relation. Let P(U)

be the collection of permutations of U.
Lemma 6.8. The group G is isomorphic to the automorphism group of Ag.

Proof. A permutation of N induces an automorphism of A¢ if and only if it preserves
each U-relation. Hence Aut(Ag) is isomorphic to

ngz‘geo@ P(U) x HnGN H1§¢gen P(U}).

However, as each P(ﬁfo) is isomorphic to S, and each P(ﬁf‘) is isomorphic to S, we

have that Aut(Ag) = G. O

Lemma 6.9. Let L be a countable unary language and M be a countably infinite
L-structure. Then Aut(M) is isomorphic to a product of symmetric groups.

Proof. For x,y € M, define x ~ y to hold when = and y have the same quantifier-
free L-type. Let E be the collection of ~-equivalence classes. As L is unary, the
automorphisms of M are precisely those permutations of the underlying set of M that
preserve ~. Hence Aut(M) = [[ycp Spy)- O
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Note that Lemmas 6.8 and 6.9 imply the standard fact that the countable products
of symmetric groups on countable (finite or infinite) sets are precisely those groups
isomorphic to automorphisms of structures in countable unary languages.

6.4. Non-existence of invariant probability measures. Recall that G = Aut(Ag)
by Lemma 6.8. For the rest of the section, fix a countable relational language L that
extends Lg.

We now classify those orbits in Str}i‘; ;, that admit an Aut(Ag)-invariant probability
measure. Then in particular, if L \ Lg has relations of arbitrarily high arity, then
Strfgy ; will be a universal G-space, and so we will obtain a classification of those
transitive G-spaces that admit G-invariant probability measures.

Notice that in any structure M € Strfg 1. the algebraic closure of the empty set
contains Vﬁﬂc, which is non-empty precisely when G is not a countable power of S..
Hence, when Vﬁ“ﬁc is non-empty, M does not have trivial definable closure. To deal
with this issue, we define the following notion.

Definition 6.10. An L-structure M € Str}j‘i 1, has almost-trivial definable closure
if and only if for every tuple @ € M, we have

del(@U Vo) = au Ve,

Note that the analogous notion of almost-trivial algebraic closure coincides with
almost-trivial definable closure, similarly to the way that trivial definable closure and
trivial algebraic closure coincide. Using this notion, we can now state our main classi-
fication.

Theorem 6.11. Let M € StrfgyL. Then Orbr, (M) admits a G-invariant probability
measure if and only if M has almost-trivial definable closure.

We will prove Theorem 6.11 in two steps. We prove the forward direction in Propo-
sition 6.12. This argument is very similar to an analogous result in [AFP12], but we
include it here for completeness. In Proposition 6.14, we prove the reverse direction.

Proposition 6.12. Let M € Str}i‘iL, and suppose that Orbp.(M) admits a
G-invariant probability measure. Then M has almost-trivial definable closure.

Proof. Let p be a G-invariant probability measure on Orby (M), and suppose that
there is a finite tuple @ € M such that

b€ del(@u Vo) \ (@u Vie).

Let p(ZTy) be a formula that generates a (principal) £, ., (L)-type of ab, i.e., a formula
of L,, (L) with free variables Ty such that for any L, ,(L)-formula 1) whose free
variables are among Ty, either

= (YD) (W) (p(Ty) = Y(3Y))  or = (VD) (YY) (p(TY) — ~(TY)).
Because M = (37y) p(Ty), the measure v is concentrated on [(IZy) p(Ty)] 4. By
the countable additivity of u, there is some m € N such that u(ﬂ(ﬂy)p(my)]]AG) > 0.
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Now, b & VA6 and so b € VA9, Hence we must have M = U®(b) for some k such
that 1 <k < /. Let

F:={n"eN: Ag = U>(n") and n* ¢ m}.
As b ¢ @, note that [(Jy) p(my)] 4., = Uner [P(Mn)] 4. Because b € del(a U VAe)\

(@U VA6), for any distinct ng,ny € F we have [p(mno)] 4, O [p(mn1)] 4, = 0, and so

1([Gy) pmy)l 4.) = Dopecr n([pmn*)] 4.,)-
By countable additivity, there is some n € F such that o := p([p(mn)] AG) > 0.

Further, by the definition of F', for every n* € F there is some g € G such that

g(n) = mn* and g fixes V6. As p is G-invariant, for all n* € F we have
n(lpmn)] ) = w(lp(mn)],,), and so u([3y) p(My)]4,) = Yopecr - This is a
contradiction, as a > 0 and F' is infinite. 0

This concludes the forward direction of Theorem 6.11.

6.5. Constructing the invariant probability measure. The reverse direction of
Theorem 6.11 will use the construction in Section 4 analogously to the way in which the
main construction in [AFP12] is used to classify those transitive S.,-spaces admitting
Sso-invariant probability measures.

Lemma 6.13. Let M € Strfng, and suppose that p is a Gs-invariant probabil-
ity measure on Orbr.(M). Then there is a G-invariant probability measure g, on

OI‘bLG (M) .

Proof. First note that, for eachn € Nand 1 <17 < /,, there is a unique order-preserving
bijection N
ot UM —{1,...,n}.

Recall that these relations ﬁf’, along with ﬁ;’g, partition Ag. Define the maps

a: N — Nand

f:N—NU{x}
to be such that for all n € N,

Ac Uaﬁ((:))(”)
For every finite subset Y C N, let

.. B()
Y* = UUa(y).
yey

Further, define the finite group
Gy = H {Sy: By eY)(aly) =aand B(y) =b)}.

a,beN
In other words, Gy contains the product of |[{a(y) : y € Y and 8(y) = b}|-many
copies of Sj. s
There is a natural action of Gy on Y* that fixes V,, pointwise, and uses the a(y)-th

copy of Sg(,) to permute Uﬁ((;")).
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We will define pg, via a sampling procedure. Begin by sampling an element
N* € Orby.(M) according to u. Next, for each unary relation U where n € N
and 1 <7 < /,,, independently select an element o} of S5,,, uniformly at random. Fi-
nally, let pg, be the distribution of the structure N € StrfGG’ ;, defined as follows. For
every relation symbol R € L and every hy,...,h; € N, where j is the arity of R, let

N E R(hy,....hy) iff N* = R(BL,.... B,

where for 1 < p < 7, when h; € (/J\EL for some n € N and ¢ such that 1 < i < /,, we
have

-1 *
(@) o) (hy) = hy,
and when hj € ‘70/0, we have hy = h,. Now, N is almost surely isomorphic to N'* via
the isomorphism that is the identity on V., and is (¢7)"'o™ on each U. Thus ug, is
is a measure on Orby, (M), as claimed.
We now show that the probability measure pug, is Ggy-invariant. Because, in the

definition of pg,, each finite permutation o' was selected uniformly independently
from S,,, we have

sn ([R(h1s - 1)) = !

V= Iam— u( R(g(h1), ..., g(hy) )
o oo MU M
J
where each g € Gy, ...,y acts on each h, (for 1 < p < j) as described above.
Note, however, that for all g* € Ghy, there is some g € Gyp,,..n,;) such that the
actions of g and ¢g* agree on {h4,...,h;}. Hence

,uﬁn<[[R(g*(h1), . ,g*(hj))ﬂAg> = pn ([R(Ma, - .-, hj)]]AG)7

and so fig, is Ggy-invariant.

Recall that p is G-invariant. We now show that pg, is also G-invariant, so that
[n 1S invariant under G = G, X Ggy, as desired. Let f € G, let R € L be a relation
symbol, and let j be the arity of R. We now show that, for all hy,...,h; € N,

Mﬁn([[R(f(hl)v s 7f<hj))]]Ag>
_ ! > ([RGU R, g )],

Gttt yec il s

1

N Z u([[R(g(hﬂ?---ag(hj))]]AG>

‘G{hlv"'vhj} ’

= Mﬁn([[R(hl’ sy hj)]]Ag)’

where each g € Gy, .5} again acts on each g(h,) and h, (for 1 < p < j) as described

above. The first and third equalities are as before. Note that f is the identity on f/;l and
80 G{f(h),...f(h))} = G{h,...n;}; the second equality follows from this and our assumption
that p is Gy-invariant. Therefore ug, is G-invariant, hence G-invariant. O
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Proposition 6.14. Let M € StrfGG’L, and suppose that M has almost-trivial definable
closure. Then Orby, (M) has a G-invariant probability measure.

Proof. There are two cases. Suppose ‘70/0 is empty. In this case, G is the trivial group,
and so every measure on Orby, (M) is Go-invariant.

Otherwise, V., is non-empty. Hence U € Lg, and so ﬁf/o is a countably infinite
set. Therefore V. is countably infinite, and so there is a bijection 7: Vo — N. Let
M7 € Stry, 1, be such that for any quantifier-free L-type ¢,

M glhy, o hy) i M= q(r (b)), (hy),

where j is the number of free variables of ¢.

Fix some countable admissible set A containing the Scott sentence o of M7 (equiv-
alently, of M). Let the L4-theory ¥4 be the definitional expansion (as in Lemma 2.1)
of A. Let Ty := X4 U {04}, where 04 € L4 is a pithy II, sentence such that

YaEoaeo.

For each i € N define the language L; := L4 and theory T; := T4, and let ); be any
enumeration of all quantifier-free L4-types over A (of which there are only countably
many).

Let M7, be the unique expansion of M™ to a model of ¥4. We will now show
that there is an S{°-invariant probability measure on Stry, 1, that is concentrated on
the class of models of T4. We will do so by showing that (Q;);cn satisfies conditions
(W), (D), (E) and (C) of our main construction, and so Proposition 4.3 applies. Now,
(W), (E), and (C) follow immediately as each @); enumerates all quantifier-free types
consistent with T; = Ty.

Suppose we do not have condition (D), i.e., duplication of quantifier-free types. Then
there is some ¢ € N, some non-redundant non-constant quantifier-free type ¢ € @Q;, and
some tuple @ € M7, such that there is a unique b € VO/;A A (as ¢ is non-constant) for
which

M} = q(@,b).

In particular, if g € Aut(M7) fixes @ U V' pointwise, then g(b) = b, and so M7
does not have almost-trivial definable closure (since b is disjoint from @ as ¢ is non-
redundant). This violates our assumption of almost-trivial definable closure for M, as
M is isomorphic to M7. Hence condition (D) holds, and so by Proposition 4.3 there
is an invariant measure mg, on Stry, 1, that is concentrated on the class of models of
Ty, i.e., the isomorphism class of M7,.

Now let 1 be the probability measure on Strfg’ ;, satisfying, for any relation symbol
Re L,

p([R(ha, - b)) = #eo (TR(T(Ry), - - T(Ry)] ),
where j is the arity of R. The measure p is concentrated on Orby. (M), as mZ,
is concentrated on the isomorphism class of M7. Hence the restriction p' of u to

Orbg, (M) is a probability measure. Furthermore, p is Goo-invariant because mg, is
S invariant.
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By Lemma 6.13 applied to M and 4/, there is a G-invariant probability measure on
Orb La (./\/l ) . O

This concludes the reverse direction of Theorem 6.11.

7. CONCLUDING REMARKS

In this paper we have provided conditions under which the class of models of a theory
admits an invariant measure that is not concentrated on any single isomorphism class.
But much remains to be explored. In particular, there are natural constructions of
invariant measures that do not arise by the techniques that we have described, but
which would be interesting to capture through general constructions.

7.1. Other invariant measures. The best-known invariant measures concentrated
on the Rado graph are the distributions of the countably infinite Erdés-Rényi random
graphs G(N, p) for 0 < p < 1, in which edges are chosen independently using weight
p coins. These are not produced by our constructions. In particular, when considered
as arising from dense graph limits, these limits all have positive entropy (as defined
in, e.g., [Janl3, §D.2]), while any of our invariant measures concentrated on graphs
corresponds to a dense graph limit that has zero entropy; equivalently, our measures
arise from graphons that are {0, 1}-valued a.e., or “random-free” (see [Janl3, §10]).

7.1.1. Kaleidoscope theories. A similar phenomenon occurs with the following natu-
ral construction of an invariant measure concentrated on the class of models of the
Kaleidoscope theory built from certain ages. Consider an age A in a language L, both
satisfying the hypotheses of Proposition 5.7, and let n € N be such that A has at least
two non-equal elements of size n on the same underlying set.

Since A is a strong amalgamation class, there is some invariant measure g concen-
trated on the (isomorphism class of the) Fraissé limit of A, as proved in [AFP12]. We
now describe an invariant measure, constructed using u, that is concentrated on the
class of models of the Kaleidoscope theory T, built from the age A.

Namely, consider the distribution u., of the following random construction. Let
X be a random structure in Stry__ such that for each i € N, X|;: is an Li-structure
consisting of an independent sample from p. Observe that this procedure almost surely
produces a model of T,,, and so ji is an invariant measure concentrated on the class
of models of T.

For any n-tuple @ € N and any distinct 4, j € N, the random quantifier-free Li-type
of @ induced by sampling from p., is independent from the random quantifier-free
L’-type of @. Hence the set of structures realizing any given quantifier-free L.o-type
in n variables has measure 0, and so i, assigns measure 0 to any single isomorphism
class. Furthermore, for ages consisting of graphs, when p is not random-free, one can
show that the resulting invariant measure is not captured via our constructions above.

For example, consider the case of the Kaleidoscope random graphs, where p is the
distribution of the Erdés-Rényi graph G(N,1/2), in which edges are determined by
independent flips of a fair coin. Then ., is an invariant measure determined by
independently flipping a fair coin to determine the presence of a c-colored edge for each
pair of vertices, for each of countably many colors ¢. The measure ji, is concentrated
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on the class of Kaleidoscope random graphs and assigns measure 0 to each isomorphism
class, but does not arise via our methods.

7.1.2. Urysohn space. Likewise, there is another natural invariant measure on Stry,
concentrated on the class of countable Lys-structures N that are models of Ty (i.e.,
such that the completion of Py is U), but which assigns measure 0 to each isomorphism
class.

Namely, for any countable dense set D C R, , recall that DU is the metric space
induced by the Fraissé limit of all finite metric spaces (considered as Lyg-structures)
whose set of non-zero distances is contained in D. Note that for any such D, the
Lys-structure M py has trivial definable closure (unlike the Lyg-structure correspond-
ing to a typical sample of the invariant measure my that we constructed in Proposi-
tion 5.15). Hence, as proved in [AFP12], there is an invariant measure mp on Stry,,,
concentrated on the isomorphism class of Mpy.

Now let D be a random subset of R, chosen via a countably infinite set of indepen-
dent samples from any non-degenerate atomless probability measure on R.. Then with
probability 1, the set D is infinite, dense, and for any given r € R, does not contain
r. Finally, consider the random measure mg. Its distribution is also an invariant mea-
sure on Stry,,, concentrated on the class of countable Lyg-structures A such that the
completion of the corresponding metric space Py is isometric to U, but which assigns
measure 0 to each isomorphism class. However, this invariant measure is different from
the measure my that we constructed in Proposition 5.15, as a typical sample from it
has trivial definable closure, whereas a typical sample from my does not.

We now discuss a more elaborate case of invariant measures that can also be described
explicitly but which do not arise from our construction. This set of examples, along
with the explicit Kaleidoscope and Urysohn constructions described above, motivate
the search for further general conditions that lead to invariant measures.

7.1.3. Continuous transformations. The previous example involved no relationship be-
tween the various copies I’ of the original language. We now consider a more complex
example, in which interactions within a sequence of languages allow us to describe
“transformations” from one structure to another. Although the invariant measure in
this example will assign measure 0 to every isomorphism class, it is not clear how it
could arise from the methods of this paper.

Let L be a countable relational language. Consider the larger language L., which
consists of the disjoint union of countably infinitely many copies L' of L indexed by
t € QNJ0,1]. For each relation symbol R € L, write R' for the corresponding sym-
bol indexed by t € QN [0,1]. One can think of the Li,-structure as describing a
“time-evolution” starting with a structure which occurs in the first sublanguage L°,
and ending at another structure which occurs in the last sublanguage L', progressing
through structures in intermediate sublanguages.

Definition 7.1. Let My be an L°-structure and My an L'-structure. We call an
Ly, -structure M a transformation of M, into My when

M|L0:M0 and M|L1:M1,
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and for all relation symbols R € L, where n is the arity of R, and all s,t € Q such
that 0 < s <t <1,

M (Var, ... z0) (R (21, ... 20) = RN (21, .., 30)).

We now define a notion, called a nesting, that will ensure coherence between struc-
tures in languages with intermediate indices, as “time” progresses.

Definition 7.2. Suppose Ay is an age in the language L° and A, is an age in the
language L'. We define a nesting of Ay in A; to be an age A in the language L° U L
that satisfies the following properties:

e A is a strong amalgamation class.
e For every KK € A and every relation R in L,

K (Vay, ..., 2,) (R(21, ... 20) = R (z1,...20)),

where n s the arity of R.
o If N is a Fraissé limit of A, then N|ro is a Fraissé limit of Ay and N'|p is a
Fraissé limit of A;.

For example, consider the age consisting of all those ways that a finite graph can
be overlaid on a finite triangle-free graph (using a different edge relation) such that
whenever there is an edge in the latter there is a corresponding edge in the former.
This is a nesting of the collection of finite triangle-free graphs in the collection of finite
graphs. The Fraissé limit of the joint age consists of a copy of the Rado graph overlaid
on a copy of the Henson triangle-free graph (using different edge relations) such that
whenever a pair of vertices has an edge in the latter, it has one in the former.

Given a nesting A of Ay in A; as in Definition 7.2, we will now describe a random
Ly,-structure M that is a.s. a transformation of M |0 into M |1, and for which M|po 11
is a Fraissé limit of A, almost surely. Furthermore, the distribution of M will be
invariant under arbitrary permutations of the underlying set.

Because A has the strong amalgamation property, there is some probability measure
(1 on Stryoyrt, invariant under S, that is concentrated on the isomorphism class of
the Fraissé limit of A. Our procedure starts by first sampling 4 to obtain a random
structure N € Strroyp1.

Conditioned on N, for every relation symbol R € L and every ji,...,J, € N, where
n is the arity of R, choose rgj, . ;. € R as follows. If

N }Z _‘Ro(jb s 7jn) A Rl(jla e ajn)a
then independently choose a real number 7, ;. € (0,1) uniformly at random; if
N ): _'Ro(jla s 7]n) A _‘Rl(jb B 7jn)7

then let 7rj, . j, =2, so that R*(ji,...,j,) will not hold for any s; otherwise let
TRjr...jn = 0. Define M to be the L,-structure such that for all s € QN [0, 1],

M= R*(j1;- -5 Jn)

if and only if s > rg;, ;. for all R € L and every ji,..., j, € N, where n is the arity
of R.
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The real rg;, . ;. can be thought of as the point in time at which R(j1,...,Jn)
“appears”, in that it flips from not holding (in sublanguages L*® for s < rgj, . j.) to
holding (in sublanguages L® for s > rgj, ;. ). Each M|« then provides a “snapshot”
of the structure over time as it transitions from M|o to M| 1, whereby the relations
hold of more and more tuples. In particular, for any tuple and relation (of the same
arity), the set of “times” for which the relation holds of the tuple is upwards-closed.

Note that whenever there are such points 7gj, . ;, other than 0 and 2, i.e., when
there is some tuple of which a relation holds in M]|z: but not in M|, then any
two independent samples from the distribution of M are a.s. non-isomorphic, as their
respective sets of transition points are a.s. distinct. Hence, under this hypothesis, the
distribution of M is an invariant measure that assigns measure 0 to every isomorphism
class of L.-structures.

7.2. Open questions. In this paper, we have given conditions on a first-order theory
that ensure the existence of an invariant measure concentrated on the class of its
models but on no single isomorphism class; but a complete characterization has yet
to be determined. It would be interesting also to characterize the structure of these
invariant measures.

Another question is to find conditions under which one can formulate similar results
for appropriate models of more sparse structures. Various notions of sparse graphs
and intermediate classes have recently been studied extensively (see, e.g., [NO12] and
[INO13]); for a presentation of graph limits for bounded-degree graphs, see [Lov12].

One may also ask whether one can obtain measures concentrated on the class of
models of the theory of continuous transformations described in §7.1.3, and still not
on any single isomorphism class, in a “random-free” way, i.e., by sampling from a
(two-valued) continuum-sized structure, as in our main construction.
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