
Computability of Algebraic and Definable Closure

Nathanael Ackerman1, Cameron Freer2, and Rehana Patel3

1 Harvard University, Cambridge, MA 02138, USA
nate@aleph0.net

2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
freer@mit.edu

3 African Institute for Mathematical Sciences, M’bour–Thiès, Senegal
rpatel@aims-senegal.org

Abstract. We consider computability-theoretic aspects of the algebraic and definable closure
operations for formulas. We show that for ϕ a Boolean combination of Σn-formulas and in
a given computable structure, the set of parameters for which the closure of ϕ is finite is
Σ0

n+2, and the set of parameters for which the closure is a singleton is ∆0
n+2. In addition, we

construct examples witnessing that these bounds are tight.

Keywords: algebraic closure, definable closure, computable model theory

1 Introduction

An important step towards understanding the relationship between model theory
and computability theory is to calibrate the effective content of concepts that are
fundamental in classical model theory. There is a long history of efforts to understand
this calibration within computable model theory; see, e.g., [Har98].

In this paper, we study the computability of two particular model-theoretic
concepts, namely the related notions of algebraic closure and definable closure, which
provide natural characterizations of a “neighborhood” of a set; for more details, see
[Hod93, §4.1]. In recent years, the property of a structure having trivial definable
closure (i.e., the definable closure of every finite set is itself), or equivalently, trivial
algebraic closure, has played an important role in combinatorial model theory and
descriptive set theory; for some characterizations in terms of this property see, e.g.,
[CSS99], [AFP16], and [CK18].

The standard notions of algebraic and definable closure can be refined by carrying
out a formula-by-formula analysis. We consider the computational strength of the
problem of identifying the algebraic or definable closure of a formula in a computable
structure, and we give tight bounds on the complexity of both. Further, when the
formula is quantifier-free, we achieve tightness of these bounds via structures that
are model-theoretically “nice”, namely, are ℵ0-categorical or of finite Morley rank.

October 28, 2019

2 Ackerman, Freer, and Patel

1.1 Preliminaries

For standard notions from computability theory, see, e.g., [Soa16]. We write {e}(n)
to represent the output of the eth Turing machine run on input n, if it con-
verges, and in this case write {e}(n) ↓. Define We := {n ∈ N : {e}(n) ↓} and
Fin := {e ∈ N : We is finite}. Recall that Fin isΣ0

2 -complete [Soa16, Theorem 4.3.2]).

In this paper we will focus on computable languages that are relational. Note
that this leads to no loss of generality due to the standard fact that computable
languages with function or constant symbols can be interpreted computably in
relational languages where there is a relation for the graph of each function. For the
definitions of languages, first-order formulas, and structures, see [Hod93].

We will work with many-sorted languages and structures; for more details, see
[TZ12, §1.1]. Let L be a (many-sorted) language, let A be an L-structure, and
suppose that a is a tuple of elements of A. We say that the type of a is

∏
i≤nXi

when a ∈
∏

i≤n(Xi)
A, where each of X0, . . . , Xn−1 is a sort of L. The type of a tuple

of variables is the product of the sorts of its constituent variables (in order). The type
of a relation symbol is defined to be the type of the tuple of its free variables, and
similarly for formulas. We write (∀x : X) and (∃x : X) to quantify over a tuple of
variables x of type X (which includes the special case of a single variable of a given
sort).

If we so desired, we could encode each sort using a unary relation symbol, and
this would not affect most of our results. However, in Section 3 we are interested in
how model-theoretically complicated the structures we build are, and if we do not
allow sorts then the construction in Proposition 9 providing a lower bound on the
complexity of algebraic closure will not yield an ℵ0-categorical structure.

We now define computable languages and structures.

Definition 1. Suppose L =
(
(Xj)j∈J , (Ri)i∈I) is a language, where I, J ∈ N ∪ {N}

and (Xj)j∈J and (Ri)i∈I are collections of sorts and relation symbols, respectively. Let
tyL : I → J<ω be such that for all i ∈ I, we have tyL(i) = (j0, . . . , jn−1) where the
type of Ri is

∏
k<nXjk . We say that L is a computable language when tyL is a

computable function. For each computable language, we fix a computable encoding of
all first-order formulas of the language.

A computable L-structure A is an L-structure with computable underlying set
such that the sets {(a, j) : a ∈ XAj } and {(b, i) : b ∈ RAi } are computable subsets of
the appropriate domains.

We say that c ∈ N is a code for a structure if {c}(0) is a code for a computable
language (via some fixed enumeration of functions of the form tyL) and {c}(1) is a
code for some computable structure in that language. In this case, we write Lc for the
language that {c}(0) codes, Mc for the structure that {c}(1) codes, and Tc for the
first-order theory of Mc. Let CompStr be the collection of c ∈ N that are codes for
structures.

Computability of Algebraic and Definable Closure 3

Note that these notions relativize in the obvious way. For more details on basic
notions in computable model theory, see [Har98].

Towards defining algebraic closure and definable closure for formulas, we first
describe when a formula is algebraic or definable at a given tuple.

Definition 2. Let ϕ(x; y) be a first-order L-formula, let A be an L-structure, and
suppose a ∈ A has the same type as x.

• The formula ϕ(x; y) is algebraic at a if

clϕ,A(a) := {b ∈ A : A |= ϕ(a; b)}

is finite (possibly empty).
• The formula ϕ(x; y) is definable at a if

∣∣clϕ,A(a)
∣∣ = 1.

We now describe several sets that encode those formulas that are algebraic or
definable at given tuples. These are our analogues, for individual formulas, of the
standard notions of algebraic closure and definable closure. See [Hod93, §4.1] for more
details on these standard notions.

Definition 3.
• CL :=

{
(c, ϕ(x; y), a, k) : c ∈ CompStr, ϕ(x; y) a first-order Lc-formula, a ∈Mc

having the same type as x, and k ∈ N ∪ {∞} with | clϕ,Mc(a)| = k
}

.

• ACL :=
{

(c, ϕ(x; y), a) : there exists k ∈ N with (c, ϕ(x; y), a, k) ∈ CL
}

.

• DCL :=
{

(c, ϕ(x; y), a) : (c, ϕ(x; y), a, 1) ∈ CL
}

.

• For Y ∈ {CL,ACL,DCL} and n ∈ N let

Yn := {t ∈ Y : the second coordinate of t is a Boolean combination of

Σn-formulas}.

• For Y ∈ {CL,ACL,DCL} ∪ {CLn,ACLn,DCLn}n∈N and c ∈ CompStr, let
Y c := {u : (c)∧u ∈ Y }, i.e., select those elements of Y whose first coordinate is
c, and then remove this first coordinate.

Note that CompStr is a Π0
2 class. Hence even before we consider the complexity of

whether formulas are algebraic or definable at various tuples, the sets CL,ACL,DCL
are already complicated computability-theoretically. As such, we will mainly be
interested in the question of how complex CLc,ACLc,DCLc can be, when c is a code
for a structure. The next three lemmas connect these sets.

Lemma 4. Uniformly in the parameters c ∈ CompStr and n ∈ N, the set

{(ϕ(x; y), a, k) ∈ CLcn : k ∈ N, k ≥ 1}

is computably enumerable from DCLcn.

4 Ackerman, Freer, and Patel

Proof. Suppose ϕ(x; y) is a Boolean combination of Σn-formulas, and let k ≥ 1. For
each j < k, choose a tuple of new variables z j of the same type as y. Define the
formula

Φϕ(x;y),k :=
∧

k0<k1<k

(z k0 6= z k1) ∧
∧
k1<k

ϕ(x; z k1)

which specifies k-many distinct realizations of the tuple y in ϕ(x; y), given an instan-
tiation of x. Note that Φϕ(x;y),k is also a Boolean combination of Σn-formulas.

For j < k, let τj := x z 0 · · · z j−1 z j+1 · · · z k−1, and write Φϕ(x;y),k(τj ; z
j) to mean

Φϕ(x;y),k considered as a formula whose free variables are partitioned as (τj, z
j). Note

that (ϕ(x; y), a, k) ∈ CLcn if and only if(
Φϕ(x;y),k(τj; z

j), a b 0 · · · b j−1 b j+1 · · · b k−1
)
∈ DCLcn

for some j < k and b 0, . . . , b j−1, b j+1, . . . , b k−1 ∈Mc. By enumerating over all such
parameters, and enumerating over all choices of ϕ and k, we see that the desired set
is c.e. from DCLcn. ut

Lemma 5. Uniformly in the parameters c ∈ CompStr and n ∈ N, the set{(
ϕ(x; y), a, k

)
∈ CLcn : k = 0

}
is computably enumerable from DCLcn.

Proof. Suppose ϕ(x; y) is a Boolean combination of Σn-formulas. Let z be a tuple of
variables having the same type as y and disjoint from x y. Let

Ψϕ(x;y)(x z; y) := ϕ(x; y) ∨ (y = z).

Note that Ψϕ(x;y)(x z; y) is also a Boolean combination of Σn-formulas.

Now suppose b0 and b1 are distinct tuples of elements of Mc having the same
type as z. Then the following are equivalent:

•
(
Ψϕ(x;y)(x z; y), a b0

)
∈ DCLcn and

(
Ψϕ(x;y)(x z; y), a b1

)
∈ DCLcn;

•
{
b : Mc |= ϕ(a; b)

}
= ∅, i.e., (ϕ(x; y), a, 0) ∈ CLcn.

The result is then immediate. ut

Lemma 6. Uniformly in the parameters c ∈ CompStr and n ∈ N, there are com-
putable reductions in both directions between ACLcn

∐
DCLcn and CLcn.

Proof. It is immediate from the definitions that DCLcn is computable from CLcn.
Further, ACLcn is computable from CLcn as

ACLcn =
{

(ϕ(x; y), a) : (∃k) (ϕ(x; y), a, k) ∈ CLcn and k 6=∞
}

Computability of Algebraic and Definable Closure 5

and (ϕ(x; y), a, k) ∈ CLcn holds for a unique k ∈ N ∪ {∞}.
Lemmas 4 and 5 together tell us that {(ϕ(x; y), a, k) ∈ CLcn : k ∈ N} is

computably enumerable from DCLcn. But (ϕ(x; y), a,∞) ∈ CLcn if and only if
(ϕ(x; y), a) 6∈ ACLcn. Therefore when ϕ(x; y) is a Boolean combination of Σn-formulas,
and given a ∈Mc, we can compute from ACLcn whether or not (ϕ(x; y), a,∞) ∈ CLcn.
Further, if (ϕ(x; y), a,∞) 6∈ CLcn, then we can compute from DCLcn the (unique)
value of k such that (ϕ(x; y), a, k) ∈ CLcn. Hence CLcn is computable from the set
ACLcn

∐
DCLcn. ut

Note that by Lemma 6 we are justified, from a computability-theoretic perspective,
in restricting our attention to ACL and DCL (and their variants), as opposed to CL.

2 Upper Bounds for Quantifier-Free Formulas

We now provide straightforward upper bounds on the complexity of ACLc0 and DCLc0
for c ∈ CompStr.

Proposition 7. Uniformly in the parameter c ∈ CompStr, the set ACLc0 is a Σ0
2

class.

Proof. Uniformly in c ∈ CompStr, a quantifier-free Lc-formula ϕ(x; y), and tuple
a ∈Mc of the same type as x, we can computably find an e ∈ N such that We equals
clϕ,Mc(a) (where the elements of clϕ,Mc(a) are encoded in N in a standard way).

Further, (ϕ(x; y), a) ∈ ACLc0 if and only if clϕ,Mc(a) is finite. Therefore ACLc0 is
Σ0

2 as Fin is Σ0
2 . ut

Proposition 8. Uniformly in the parameter c ∈ CompStr, the set DCLc0 is the
intersection of a Π0

1 and a Σ0
1 class (in particular, it is a ∆0

2 class).

Proof. Uniformly in c ∈ CompStr, the set of all tuples (ϕ(x; y), a) such that

Mc |= (∀y0, y1)
(
(ϕ(a; y0) ∧ ϕ(a; y1))→ (y0 = y1)

)
holds is a Π0

1 class. Likewise, uniformly in c ∈ CompStr, the set of all tuples (ϕ(x; y), a)
such that there exists b with Mc |= ϕ(a; b) is a Σ0

1 class. ut

As a consequence, DCLc0 is computable from 000′.

3 Lower Bounds for Quantifier-Free Formulas

We now show that the upper bounds in Section 2 are tight. Further, we do so using
structures that have nice model-theoretic properties.

We first show that the upper bound in Proposition 7 is tight.

Proposition 9. There is a parameter c ∈ CompStr such that the following hold.

6 Ackerman, Freer, and Patel

(a) Lc has no relation symbols, i.e., Lc consists only of sorts.
(b) For each ordinal α, the theory Tc has (|α + 1|ω)-many models of size ℵα. In

particular, Tc is ℵ0-categorical.
(c) ACLc0 ≡1 Fin. In particular, ACLc0 is a Σ0

2-complete set.

Proof. Let
(
(ei, ni)

)
i∈N be a computable enumeration without repetition of

{(e, n) : e, n ∈ N and {e}(n)↓}.

Note that for each ` ∈ N ∪ {∞}, there are infinitely many programs that halt on
exactly `-many inputs, and so there are infinitely many e ∈ N that are equal to ei for
exactly `-many i.

Let c ∈ CompStr be such that

• Lc consists of infinitely many sorts (Xi)i∈N and no relation symbols,
• the underlying set of Mc is N, and
• for each i ∈ N, the element i is of sort Xei in Mc.

A model of Tc is determined up to isomorphism by the number of elements in
the instantiation of each sort. Hence there are ℵ0-many sorts of each finite size and
ℵ0-many that are infinite (each of which may have size ℵβ for arbitrary β ≤ α, in a
model of size ℵα), and so (b) holds.

Now |We| = |(Xe)
Mc | and so Fin is 1-equivalent to {e : (Xe)

Mc is finite}. Recall
that each variable in a many-sorted language is assigned a single sort, and so no
non-trivial Boolean combination of instantiations of sorts is definable. Since there
are no relation symbols in Lc, every quantifier-free definable set is contained in some
product of instantiations of sorts, and is itself the product of finite or cofinite subsets
of instantiations of sorts. Therefore ACLc0 is 1-equivalent to {e : (Xe)

Mc is finite} as
well, establishing (c). ut

We now show that the upper bound in Proposition 8 is tight.

Proposition 10. There is a parameter c ∈ CompStr such that the following hold.

(a) The language Lc has one sort and a single binary relation symbol E.
(b) The structure Mc is a countable saturated model of Tc with underlying set N.
(c) For each ordinal α, the theory Tc has (|α + ω|)-many models of size ℵα, and has

finite Morley rank.
(d) There is a computable array

(
Uk,`
)
k,`∈N of subsets of N such that every countable

model of Tc is isomorphic to the restriction ofMc to underlying set Uk,` for exactly
one pair (k, `).

(e) If N ∼=Mc then uniformly in N we can compute 000′ from{
a :

∣∣{b : N |= E(a; b)}
∣∣ = 1

}
.

Computability of Algebraic and Definable Closure 7

(f) The set

{a : (E(x; y), a) ∈ DCLc0}

has Turing degree 000′.

Proof. Let g : N→ {0, 1} be the characteristic function of 000′, i.e., such that g(n) = 1
if and only if n ∈ 000′. As 000′ is a ∆0

2 set, there is some computable function f : N×N→
{0, 1} such that lims→∞ f(n, s) = g(n) for all n ∈ N.

We will constructMc in the language specified in (a) so as to satisfy the following
axioms.

• (∀x) ¬E(x, x)
• (∀x, y) (E(x, y)→ E(y, x))
• (∀x)(∃y) E(x, y)
• (∀x)(∃≤2y) E(x, y)

By a graph we mean a structure with a single undirected irreflexive binary relation.
A chain in a graph is a connected component of the graph each of whose vertices has
degree 1 or 2; hence a chain either is finite with at least two vertices, or is infinite
on one side (an N-chain), or is infinite on both sides (a Z-chain). By the order of a
chain we mean its number of vertices.

The above axioms specify that Mc will be a graph (with edge relation E) that
is the union of chains. In fact, we will construct Mc so as to have infinitely many
chains of certain finite orders, infinitely many N-chains, and infinitely many Z-chains.

For n ∈ N, let pn denote the nth prime number. We now construct Mc with
underlying set N, in stages.

Stage 0:
Let {Ni}i∈N ∪ {Zi}i∈N ∪ {F} be a uniformly computable partition of N into infinite
sets.

For each i ∈ N, let the induced subgraph on Ni be an N-chain, and let the induced
subgraph on Zi be a Z-chain. The only other edges will be between elements of F (to
be determined in later stages).

Stage 2s+ 1:
Let as be the least element of F that is not yet part of an edge. Create a finite chain
of order (ps)

2+f(s,s) consisting of as and other elements of F not yet in any edge.

Stage 2s+ 2:
For each n ≤ s, we have two cases, based on the values of f . If f(n, s) = f(n, s+ 1),
do nothing.

Otherwise, if f(n, s) 6= f(n, s+ 1), consider the (unique) chain whose order so far
is (pn)k for some positive k. Extend this chain by

(
(pn)k+1− (pn)k

)
-many elements of

8 Ackerman, Freer, and Patel

F which are not yet in any edge, so that the resulting chain has order (pn)2`+f(n,s+1)

for some ` ∈ N.

The resulting graph is computable, as every vertex participates in at least one edge,
and whether or not there is an edge between a given pair of vertices is determined by
the first stage at which each vertex of the pair becomes part of some edge.

Observe that every element of F is part of a chain of elements of F whose order
is some positive power of a prime, which moreover is the only chain in Mc whose
order is a power of that prime.

Now, every model of Tc is determined by the number of N-chains and the number
of Z-chains in it. In a model of size ℵα, there must be either ℵα-many N-chains and
0-, 1-, . . ., ℵ0-, . . ., or ℵα-many Z-chains, or vice-versa. Condition (b) holds because
the countable saturated models of Tc have ℵ0-many N-chains and ℵ0-many Z-chains,
as does Mc. Condition (c) holds because none of these N-chains or Z-chains are
first-order definable.

For condition (d), let Uk,` :=
⋃
i<kNi ∪

⋃
i<` Zi ∪ F .

Towards condition (e), note that for each n ∈ N, there is a unique chain of order
a power of pn. Writing (pn)jn for this order, we have jn ≡ g(n) (mod 2). An element
a ∈ N is one of the two ends of a finite chain or the beginning of an N-chain if and
only if |{b : N |= E(a; b)}| = 1. So, from the set {a : |{b : N |= E(a; b)}| = 1} we
can enumerate the orders of all finite chains, and hence can compute g(n) for all n.

Finally, recall that DCLc0 is computable from 000′ and so {a : (E(x; y), a) ∈ DCLc0}
is also computable from 000′. Hence (f) follows from (e). ut

4 Boolean Combinations of Σn-Formulas

We now study the complexity of ACLc and DCLc with respect to Boolean combinations
of Σn-formulas.

The following lemma captures a computable version of the standard process known
as Morleyization. The proof is straightforward.

Lemma 11. Let L be a computable language and A a computable L-structure. For
each n ∈ N there is a computable language Ln and a 000(n)-computable Ln-structure An
such that

• L ⊆ Ln ⊆ Ln+1,
• A is the reduct of An to the language L,
• for each first-order Ln-formula ϕ there is a first-order L-formula ψϕ (of the same

type as ϕ) such that

An |= (∀x0, . . . , xk−1) ϕ(x0, . . . , xk−1)↔ ψϕ(x0, . . . , xk−1),

where k is the number of free variables of ϕ, and

Computability of Algebraic and Definable Closure 9

• for each first-order L-formula ψ, if ψ is a Boolean combination of Σn-formulas
then there is a first-order quantifier-free Ln-formula ϕψ (of the same type as ψ)
such that

An |= (∀x0, . . . , xk−1) ψ(x0, . . . , xk−1)↔ ϕψ(x0, . . . , xk−1),

where k is the number of free variables of ψ.

Lemma 11 tells us that the methods used earlier in this paper to study quantifier-
free algebraic and definable closures can be applied to more complicated formulas,
provided that we allow the structures that we build to have greater complexity, as
we now illustrate.

Corollary 12. For every n ∈ N and c ∈ CompStr,

• ACLcn is a Σ0
n+2 class, and

• DCLcn is a ∆0
n+2 class.

Proof. By Lemma 11, we know that ACLn is equivalent to the relativization of ACL0

to the class of structures computable in 000(n), and that DCLn is equivalent to the
relativization of DCL0 to the class of structures computable in 000(n).

Therefore by Propositions 7 and 8, ACLcn is a Σ0
2(000(n)) class and DCLcn is a

∆0
2(000

(n)) class. ut

In Theorem 15 we will show that these bounds are tight. Towards this, we will
need the next two results.

Suppose that L is a language containing a sort N and a relation symbol S of type
N ×N . Let A be an L-structure. We call (NA, SA) a directed N-chain when it is
isomorphic to a single-sorted structure with underlying set N in a language consisting
of the binary relation symbol S, in which S(k, `) holds precisely when ` = k + 1. In
other words, (NA, SA) is a directed N-chain if there is an isomorphism between it and
N with its successor function viewed as a directed graph. Note that this isomorphism
is necessarily unique. Given ` ∈ N, we write ̂̀ to denote the corresponding element of
NA according to this isomorphism.

Lemma 13. Let L be a language containing a sort N and a relation symbol S of
type N ×N (and possibly other sorts and relation symbols). Let A be an L-structure
such that (NA, SA) is a directed N-chain. Let k ∈ N and let h(x,m) be an L-formula
that is a Boolean combination of Σk-formulas, where x is of some type X, and m has
sort N .

Suppose that

A |= (∀x : X)(∃≤1m : N)(∃p : N) S(m, p) ∧
(
h(x,m)↔ ¬h(x, p)

)
.

Let H : XA×N→ {True,False} be the function where H(a, `) = True if and only

if A |= h(a, ̂̀). Note that lim`→∞H(a, `) exists for all a ∈ XA.

10 Ackerman, Freer, and Patel

There is an L-formula h′(x), where x is of type X, such that h′ is a Boolean
combination of Σk+1-formulas and for all a ∈ XA,

A |= h′(a) if and only if lim
m→∞

H(a,m) = True.

Proof. Define the formula h′ by

h′(x) :=
[
(∀m : N) h(x,m)

]
∨
[
(∃m, p : N)

(
¬h(x,m) ∧ h(x, p) ∧ S(m, p)

)]
.

Clearly h′ is a Boolean combination of Σk+1-formulas with the desired property. ut

Proposition 14. Let n ∈ N and let L be a language containing a sort N and a
relation symbol S of type N × N (and possibly other sorts and relation symbols).
Suppose A is an L-structure that is computable in 000(n) and such that (NA, SA)
is a computable directed N-chain. Then there is a computable language L+ and a
computable L+-structure A+ such that for every relation symbol R ∈ L other than S,
there is an L+-formula ϕR that is a Boolean combination of Σn-formulas for which
RA = (ϕR)A

+
.

Proof. We begin by defining, for relation symbols in L other than S, certain auxiliary
functions. Let R be a relation symbol in L that is not S, and let X be its type.
For every k ∈ N such that 0 ≤ k ≤ n, there is some 000(n−k)-computable function
FR,k : XA × Nk → {True,False} such that for all a ∈ XA, the following hold:

• FR,0(a) = 1 if and only if A |= R(a).
• Suppose k ≥ 1 and let `0, . . . , `k−2 ∈ N. There is at most one s ∈ N for which

FR,k(a, `0, . . . , `k−2, s) 6= FR,k(a, `0, . . . , `k−2, s+ 1).

Further,

FR,k−1(a, `0, . . . , `k−2) = lim
`k−1→∞

FR,k(a, `0, . . . , `k−2, `k−1).

Next we define the computable language L+ as follows:

• L+ has the same sorts as L.
• For each relation symbol R ∈ L other than S, there is a relation symbol R+ ∈ L+

of type X ×Nn, where X is the type of R.

Now define the computable L+-structure A+ as follows:

• A+ has the same underlying set as A, and sorts are instantiated on the same sets
in A+ as in A.

• SA
+

is the same relation as SA.
• For each R ∈ L other than S, each tuple a ∈ XA+

where X is the type of R, and
any `0, . . . , `n−1 ∈ N, we have

Computability of Algebraic and Definable Closure 11

A+ |= R+(a, ̂̀0, . . . , ̂̀n−1) if and only if FR,n(a, `0, . . . , `n−1) = True.

(Recall that for ` ∈ N, we have defined ̂̀∈ NA+
to be the `th element of the directed

N-chain.)
Finally, we build, for each relation symbol R ∈ L other than S, an L+-formula

ϕR. First apply Lemma 13 (with k = 0) to A+ and the L+-formula

h0(xy0 · · · yn−2, yn−1) := R+(x, y0, . . . , yn−1)

(where x has type X and each yi has type N) to obtain an L+-formula
h′0(xy0 · · · yn−2) that is a Boolean combination of Σ1-formulas. Next apply Lemma 13
again (with k = 1) to A+ and the L+-formula

h1(xy0 · · · yn−3, yn−2) := h′0(xy0 · · · yn−2)

to obtain an L+-formula h′1(xy0 · · · yn−3) that is a Boolean combination of Σ2-formulas.
Proceed in this way for k = 2, . . . , n− 1, to obtain an L+-formula ϕR(x) := h′n−1(x)

that is a Boolean combination of Σn-formulas for which RA = (ϕR)A
+

. ut

Combining this with results from Section 3, we obtain the following.

Theorem 15. For each n ∈ N,

(a) there is an element a ∈ CompStr such that ACLan is a Σ0
2(000(n))-complete set, and

(b) there is an element b ∈ CompStr such that DCLbn ≡T 000(n+1).

Proof. Let P be the structure constructed in the proof of Proposition 9, relativized
to the oracle 000(n), i.e., so that P is computable from 000(n). Let the structure P∗ be P
augmented with a sort N (instantiated on a new set of elements) along with a relation
symbol S of type N × N , such that (NP

∗
, SP

∗
) is a computable directed N-chain.

Part (a) then follows by applying Proposition 14 to P∗ to obtain some computable
structure, namelyMa for some a ∈ CompStr. Then ACLan is a Σ0

2(000(n))-complete set.
Let Q be the structure constructed in the proof of Proposition 10 relativized

to the oracle 000(n), i.e., so that Q is computable from 000(n). Let the structure Q∗ be
obtained from Q by similarly augmenting it by N and S, so that (NQ

∗
, SQ

∗
) is a

new computable directed N-chain. Part (b) then follows by applying Proposition 14
to Q∗ to obtain a computable structure Mb for some b ∈ CompStr. Then we have
DCLbn ≡T 000(n+1). ut

Note that the structures constructed in Theorem 15 do not obviously have the
nice model-theoretic properties (ℵ0-categoricity or finite Morley rank) that those
constructed in Proposition 9 and Proposition 10 do, because the application of
Proposition 14 makes their theories more elaborate.

Question 16. Is there some c ∈ CompStr such that ACLcn is a Σ0
2(000(n))-complete set

or DCLcn ≡T 000(n+1) and Mc is nice model-theoretically (e.g., ℵ0-categorical, strongly
minimal, stable, etc.)?

12 Ackerman, Freer, and Patel

References

[AFP16] N. Ackerman, C. Freer, and R. Patel, Invariant measures concentrated on countable structures,
Forum Math. Sigma 4 (2016), no. e17, 59 pp.

[CK18] R. Chen and A. S. Kechris, Structurable equivalence relations, Fund. Math. 242 (2018), no. 2,
109–185.

[CSS99] G. Cherlin, S. Shelah, and N. Shi, Universal graphs with forbidden subgraphs and algebraic closure,
Adv. in Appl. Math. 22 (1999), no. 4, 454–491.

[Har98] V. S. Harizanov, Pure computable model theory, Handbook of recursive mathematics, Vol. 1, Stud.
Logic Found. Math., vol. 138, North-Holland, 1998, pp. 3–114.

[Hod93] W. Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge
University Press, Cambridge, 1993.

[Soa16] R. I. Soare, Turing computability, Theory and Applications of Computability, Springer-Verlag,
Berlin, 2016.

[TZ12] K. Tent and M. Ziegler, A course in model theory, Lecture Notes in Logic, vol. 40, Cambridge
University Press, 2012.

