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Abstract

We obtain a non-implication result in the Medvedev degrees by study-
ing sequences that are close to Martin-Löf random in asymptotic Ham-
ming distance. Our result is that the class of stochastically bi-immune
sets is not Medvedev reducible to the class of sets having complex pack-
ing dimension 1.

1 Introduction

We are interested in the extent to which an infinite binary sequence X, or
equivalently a set X ⊆ ω, that is algorithmically random (Martin-Löf random)
remains useful as a randomness source after modifying some of the bits. Use-
fulness here means that some algorithm (extractor) can produce a Martin-Löf
random sequence from the result Y of modifying X. For further motivation see
Subsection 1.2 and Section 3.

A set that lies within a small Hamming distance of a random set may be
viewed as produced by an adaptive adversary corrupting or fixing some bits
after looking at the original random set. Similar problems in the finite setting
have been studied going back to Ben-Or and Linial [1].

If A is a finite set and σ, τ ∈ {0, 1}A, then the Hamming distance d(σ, τ) is
given by

d(σ, τ) = |{n : σ(n) 6= τ(n)}| .
Let the collection of all infinite computable subsets of ω be denoted by C.

Let p : ω → ω. For X,Y ∈ 2ω and N ⊆ ω we define a notion of proximity, or
similarity, by

X ∼p,N Y ⇐⇒ (∃n0)(∀n ∈ N, n ≥ n0)(d(X � n, Y � n) ≤ p(n)).

We will study the effective dimension of sequences that are ∼p,N to certain
algorithmically random reals for suitably slow-growing functions p.

∗This material is based upon work supported by the National Science Foundation under
Grants No. 0652669 and 0901020. Additionally, work on this publication was made possible
through the support of a grant from the John Templeton Foundation. The opinions expressed
in this publication are those of the authors and do not necessarily reflect the views of the John
Templeton Foundation.

1



We use the following notation for a kind of neighborhood around X.

[X]p,N = {Y : Y ∼p,N X}.

Moreover, for a collection A of subsets of ω,

[A]p,N =
⋃
{[X]p,N : X ∈ A} .

Turing functionals as random variables. Since a random variable must
be defined for all elements of the sample space, we consider a Turing functional
Φ to be a map into

Ω := 2<ω ∪ 2ω.

Setting the domain of Φ to also be Ω allows for composing maps. Let

ΛX(n) = X(n).

Thus Λ : 2ω → 2ω is the identity Turing functional.
We define a probability measure λ on Ω called Lebesgue (fair-coin) measure,

whose σ-algebra of λ-measurable sets is

F = {S ⊆ Ω : S ∩ 2ω is Lebesgue measurable},

by letting λ(S) equal the fair-coin measure of S ∩ 2ω. Thus λ(2ω) = 1 and
λ(2<ω) = 0, that is, λ is concentrated on the functions that are actually total.

The distribution of Φ is the measure S 7→ λ{X : ΦX ∈ S}, defined on F.
Thus the distribution of Λ is λ.

If X ∈ 2ω then X is called a real, a set, or a sequence depending on context.
If I ⊆ ω then X � I denotes X, viewed as a function, restricted to the set I. We
denote the cardinality of a finite setA by |A|. RegardingX,Y as subsets of ω and
letting + denote sum mod two, note that (X+Y )∩n = {k < n : X(k) 6= Y (k)}
and generally for a set I ⊆ ω, (X + Y ) ∩ I = {k ∈ I : X(k) 6= Y (k)}.

For an introduction to algorithmic randomness the reader may consult the
recent books by Nies [10] and Downey and Hirschfeldt [4]. Let MLR denote
the set of Martin-Löf random elements of 2ω. For a binary relation R we use a
set-theoretic notation for image,

RJAK = {y : (∃x ∈ A)(〈x, y〉 ∈ R)}.

Let the use ϕX(n) be the largest number used in the computation of ΦX(n).
We write

ΦX(n) ↓ @s

if ΦX(n) halts by stage s, with use at most s; if this statement is false, we write
ΦX(n) ↑ @s. We may assume that the running time of a Turing reduction is
the same as the use, because any X-computable upper bound on the use is a
reasonable notion of use.
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For a set A ⊆ 2ω, let

Interiorp,N (A) = {X : (∀Y ∼p,N X)(Y ∈ A)}

⊆ Interior∗(A) = {X : (∀Y =∗ X)(Y ∈ A)} ⊆ A
where =∗ denotes almost equality for all but finitely many inputs. It is easy to
see that

Interiorp,N (MLR) = ∅

whenever N ⊆ ω and p is unbounded.

Definition 1.1 (Effective convergence). Let {an}n∈ω be a sequence of real num-
bers.

• {an}n∈ω converges to ∞ effectively if there is a computable function N
such that for all k and all n ≥ N(k), an ≥ k.

• {an}n∈ω converges to 0 effectively if the sequence {a−1
n }n∈ω converges to

∞ effectively.

Definition 1.2. For a sequence of real numbers {an}n∈ω, lim*
n→∞ an is the

real number to which an converges effectively, if any; and is undefined if no
such number exists.

As a kind of effective big-O notation, pn = ω∗(qn) means lim*
n→∞ qn/pn = 0,

i.e., qn/pn goes to zero effectively.

Central Limit Theorem. Let N be the cumulative distribution function for
a standard normal random variable; so

N (x) =
1√
2π

∫ x

−∞
e−t

2/2 dt.

Let P denote fair-coin probability on Ω. We may write

P(Event) = P({X : X ∈ Event}) = λ{X : X ∈ Event}.

We will make use of the following quantitative version of the central limit
theorem.

Theorem 1.3 (Berry-Esséen1). Let {Xn}n≥1 be independent and identically
distributed real-valued random variables with the expectations E(Xn) = 0, E(X2

n) =
σ2, and E(|Xn|3) = ρ < ∞. Then there is a constant d (with .41 ≤ d ≤ .71)
such that for all x and n,∣∣∣∣P(∑n

i=1Xi

σ
√
n
≤ x

)
−N (x)

∣∣∣∣ ≤ dρ

σ3
√
n
.

We are mostly interested in the case Xn = X(n) − 1
2 , X(n) ∈ {0, 1}, for

X ∈ 2ω under λ, in which case σ = 1/2.

1See for example Durrett [5].
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1.1 New Medvedev degrees

Let ≤s denote Medvedev (strong) reducibility and let ≤w denote Muchnik
(weak) reducibility. A recent survey of the theory behind these reducibilities is
Hinman [8].

Definition 1.4 (see, e.g., [9]). A set X is immune if for each N ∈ C, N 6⊆ X.
If ω \X is immune then X is co-immune. If X is both immune and co-immune
then X is bi-immune.

Definition 1.5. A set X is stochastically bi-immune if for each set N ∈ C,
X � N satisfies the strong law of large numbers, i.e.,

lim
n→∞

|X ∩N ∩ n|
|N ∩ n|

=
1

2
.

Definition 1.6. Let 0 ≤ p < 1. A sequence X ∈ 2ω is p-stochastically domi-
nated if for each L ∈ C,

lim sup
n→∞

|L ∩ n|
n

> 0 =⇒ (∃M ∈ C) M ⊆ L and lim sup
n→∞

|X ∩M ∩ n|
|M ∩ n|

≤ p.

The class of stochastically dominated sequences is denoted SD = SDp. If ω\X ∈
SDp then we write X ∈ SDp and say that X is stochastically dominating.

Let IM denote the set of immune sets, CIM the set of co-immune sets, and
W3R the set of weakly 3-random sets. Let K denote prefix-free Kolmogorov
complexity.

Definition 1.7 (see, e.g., [4, Ch. 13]). The effective Hausdorff dimension of
A ∈ 2ω is

dimH(A) = lim inf
n∈ω

K(A � n)

n
.

The complex packing dimension of A ∈ 2ω is

dimcp(A) = sup
N∈C

inf
n∈N

K(A � n)

n
.

The effective packing dimension of A ∈ 2ω is

dimp(A) = lim sup
n∈ω

K(A � n)

n
.

Proposition 1.8. For all A ∈ 2ω,

0 ≤ dimH(A) ≤ dimcp(A) ≤ dimp(A) ≤ 1.

Proof. The inequality dimH(A) ≤ dimcp(A) uses the fact that each cofinite set
N ⊆ ω is in C. The inequality dimcp(A) ≤ dimp(A) uses the fact that each
N ∈ C is an infinite subset of ω.

By examining the complex packing dimension of reals that are ∼p,N to a
Martin-Löf random real for p growing more slowly than n/(log n), we will derive
our main result, which states the existence, for each Turing reduction Φ, of a set
Y of complex packing dimension 1 for which ΦY is not stochastically bi-immune.
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1.2 Relation of our results to other recent results.

Jockusch and Lewis [9] prove that the class of bi-immune sets is Medvedev re-
ducible to the class of almost diagonally non-computable functions DNC∗, i.e.,
functions f such that f(x) = ϕx(x) for at most finitely many x. Downey, Green-
berg, Jockusch, and Milans [3] show that DNC3 (the class of DNC functions tak-
ing values in {0, 1, 2}) and hence also its superset DNC∗, is not Medvedev above
the class of Kurtz random sets. We do not know whether the class of stochas-
tically bi-immune sets is Medvedev reducible to the class of DNC∗ functions.
We show in Theorem 4.3 below that from a set of complex packing dimension
1 one cannot uniformly compute a stochastically bi-immune set; on the other
hand, to compute a DNC∗ function from a set of complex packing dimension 1
one would apparently also need to know the witnessing set N ∈ C.

Definition 1.9 (see, e.g., [10, Def. 7.6.4]). A sequence X ∈ 2ω is Mises-Wald-
Church (MWC) stochastic if no partial computable monotonic selection rule
can select a biased subsequence of X, i.e., a subsequence where the relative
frequencies of 0s and 1s do not converge to 1/2.

Definition 1.10. A sequence X ∈ 2ω is BI 2 (bi-immune for sets of size two)
if there is no computable collection of disjoint finite sets of size 2 on which the
set omits a certain pattern such as 01. More precisely, X is BI 2 if for each
computable disjoint collection {Tn : n ∈ ω} where each Tn has cardinality two,
say Tn = {sn, tn} where sn < tn, and each P ⊆ {0, 1}, there is an n such
X(sn) = P (0) and X(tn) = P (1).

Each von Mises-Wald-Church stochastic (MWC-stochastic) set is stochas-
tically bi-immune. Our main theorem implies that a set of complex packing
dimension 1 does not necessarily uniformly compute a MWC-stochastic set.
This consequence is not really new with the present paper, however, because
the fact that DNC3 is not Medvedev above BI2 is implicit in Downey, Green-
berg, Jockusch, and Milans [3] as pointed out to us by Joe Miller. The situation
is diagrammatically illustrated in Figure 1, with notation defined in Figures 2
and 3. In the future we could hope to replace complex packing dimension by
effective Hausdorff dimension in Theorem 4.3.

2 Hamming space

The Hamming distance between a point and a set of points is defined by
d(y,A) := mina∈A d(y, a). The r-neighborhood of a set A ⊆ {0, 1}n is

Γr(A) = {y ∈ {0, 1}n : d(y,A) ≤ r}.

In particular,
Γr({c}) = {y ∈ {0, 1}n : d(y, c) ≤ r},

and
Γr(A) =

⋃
a∈A

Γr({a}).
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Figure 1: Some Medvedev degrees. The fact that (cp, 1) is not Medvedev above
SBI is Theorem 4.3.

// Included in

///o/o/o Not Medvedev above

+3 Medvedev above

Figure 2: Meaning of arrows.

Abbreviation Unabbreviation Definition
DNCn Diagonally non-computable function in nω

MLR Martin-Löf random
KR Kurtz random (weakly 1-random)

MWC Mises-Wald-Church stochastic 1.9
SBI Stochastically bi-immune 1.5
BI bi-immune 1.4
BI2 bi-immune for sets of size two 1.10

(H, 1) effective Hausdorff dimension 1 1.7
(cp, 1) complex packing dimension 1 1.7

Figure 3: Abbreviations used in Figure 1.
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A Hamming-sphere2 with center c ∈ {0, 1}n is a set S ⊆ {0, 1}n such that for
some k,

Γk({c}) ⊆ S ⊆ Γk+1({c}).

Theorem 2.1 (Harper [7]; see also Frankl and Füredi [6]). For each n, r ≥ 1
and each set A ⊆ {0, 1}n, there is a Hamming-sphere S ⊆ {0, 1}n such that

|A| = |S| , and |Γr(A)| ≥ |Γr(S)| .

Following Buhrman et al. [2], we write

b(n, k) :=

(
n

0

)
+ · · ·+

(
n

k

)
.

Note that for all c ∈ {0, 1}n, |Γk({c})| = b(n, k)
If the domain of σ is an interval I in ω rather than an initial segment of ω,

we may emphasize I by writing

BIr (σ) = Γr({σ}) = {τ ∈ {0, 1}I : d(σ, τ) ≤ r}.

P denotes the uniform distribution on {0, 1}I , so by definition

P(E) =
|E|
2|I|

.

Recall that Dm is the mth canonical finite set. The intuitive content of
Lemma 2.2 below is that a medium size set is unlikely to contain a random
large ball. (Note that we do not assume the sets Im are disjoint.)

Lemma 2.2. Let χ ∈ ωω. Suppose

lim*

n→∞
χ(n)/

√
n =∞. (1)

Let f ∈ ωω be a computable function. Let Im = Df(m) and nm = |Im|. Suppose

lim*

m→∞
nm =∞. (2)

For each m ∈ ω let Em ⊆ {0, 1}Im . Suppose lim supm→∞ P(Em) ≤ p where
0 < p < 1 is computable. Writing

Bχ(n)(X) for BImχ(nm)(X � Im),

we have
lim*

m→∞
P({X : Bχ(n)(X) ⊆ Em}) = 0. (3)

Moreover, for each m0 ∈ ω and computable q ∈ (p, 1) there is a modulus of
effective convergence in (3) that works for all sets {Em}m∈ω such that for all
m ≥ m0, P(Em) ≤ q.

2A Hamming-sphere is more like a ball than a sphere, but the terminology is entrenched.
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Proof. Let X ∈ 2ω be a random variable with X =d Λ, and

S(m) =
∑
i∈Im

X(i).

Let

fm(x) = P
(
S(m) − n/2√

n/2
≤ x

)
We have3

|fm(x)−N (x)| ≤ d
√
nm

.

Since lim*
m→∞ nm =∞, lim* d√

nm
= 0. So

lim*

m→∞
sup
x
|fm(x)−N (x)| = 0. (4)

Let r = rm be such that

b(n, r) ≤ |Em| < b(n, r + 1).

Let

am =
rm − n

2√
n/2

,

and let

bm = am +
1√
n/2
− χ(n)√

n/2
.

By (4),

lim*

m→∞
|fm(bm)−N (bm)| = 0. (5)

We have

lim sup
m→∞

fm(am) = lim sup
m→∞

P
(
S(m) − n/2√

n/2
≤
rm − n

2√
n/2

)

= lim sup
m→∞

P(S(m) ≤ rm) = lim sup
m→∞

b(n, r)

2n
≤ lim sup

m→∞
P(Em) ≤ p.

Since fm → N uniformly, it follows that

lim sup
m→∞

N (am) ≤ p,

3Indeed, let Yi = Xi − E(Xi) where E(Xi) = 1
2

is the expected value of Xi, so E(Yi) = 0.
By the Berry-Esséen Theorem 1.3, for all x∣∣∣∣∣P

(∑
i∈Im Yi

σ
√
n

≤ x
)
−N (x)

∣∣∣∣∣ ≤ dρ

σ3
√
n

=
d
√
n
,

where ρ = 1/8 = E(|Yi|3), and σ = 1/2 is the standard deviation of Xi (and Yi).
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and so as N is strictly increasing,

lim sup
m→∞

am ≤ N−1(p) (= 0 if p = 1/2).

Let m0 be such that for all m ≥ m0,

am +
1

√
nm/2

≤ N−1(p) + 1.

Since by assumption lim*
n→∞ χ(n)/

√
n = ∞, we have that bm is the sum of a

term that goes effectively to −∞, and a term that after m0 never goes above
N−1(p) + 1 again. Thus

lim*

m→∞
bm = −∞.

It is this rate of convergence that is transformed in the rest of the proof. Now

lim*

m→∞
N (bm) = 0.

Hence by (5), lim*
m→∞ fm(bm) = 0.

Let us write
Bt(X) := BImt (X � Im),

considering X � Im as a string of length n. By Harper’s Theorem 2.1, we have
a Hamming sphere H with

|H| = |¬Em| and
∣∣Γχ(n)(¬Em)

∣∣ ≥ ∣∣Γχ(n)(H)
∣∣ .

Then
P({X : X ∈ Γχ(n)(¬Em)}) ≥ P({X : X ∈ Γχ(n)(H)}).

Therefore

P({X : X 6∈ Γχ(n)(¬Em)}) ≤ P({X : X 6∈ Γχ(n)H)}).

Let Ĥ be the complement of H. If the Hamming sphere H is centered at c ∈
{0, 1}n then clearly Ĥ is a Hamming sphere centered at c, where c(k) = 1−c(k).
Since ∣∣∣Ĥ∣∣∣ = |Em| < b(n, r + 1),

we have Ĥ ⊂ Γr+1({c}). So we have:

P({X : Bχ(n)(X) ⊆ Em}) ≤ P({X : Bχ(n)(X) ⊆ Ĥ})

< P({X : Bχ(n)(X) ⊆ Γr+1({c})}) =
b(n, r + 1− χ(n))

2n

= P[S(m) ≤ r + 1− χ(n)] = P

[
S(m) − n

2√
n/2

≤
r + 1− n

2 − χ(n)
√
n/2

]
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= fm

(
am +

1√
n/2
− χ(n)√

n/2

)
= fm(bm).

Since we showed that lim*
m→∞ fm(bm) = 0, and since by assumption

lim*
m→∞ nm =∞,

lim*

m→∞
P({X : Bχ(n)(X) ⊆ Em}) = 0.

3 Turing reductions that preserve randomness

The way we will obtain our main result Theorem 4.3 is by proving essentially
that for any “randomness extractor” Turing reduction, and any random input
oracle, a small number of changes to the oracle will cause the extractor to fail to
produce a random output. This would be much easier if we restricted attention
to Turing reductions having disjoint uses on distinct inputs, since we would be
working with independent random variables. Indeed, one can give an easy proof
in that case, which we do not include here. The main technical achievement of
the present paper is to be able to work with overlapping use sets; key in that
respect is Lemma 3.3 below. The number of changes to the random oracle that
we need to make is small enough that the modified oracle has complex packing
dimension 1. We were not able to set up the construction so as to guarantee
effective Hausdorff dimension 1 (or even greater than 0); this may be an avenue
for future work.

For a set of pairs E, we have the projections Ex = {y : (x, y) ∈ E} and
Ey = {x : (x, y) ∈ E}.

Lemma 3.1. Let µ1 and µ2 be probability measures on sample spaces Ω1 and
Ω2 and let E be a measurable subset of Ω1 × Ω2. Suppose that η, α, and δ are
positive real numbers such that

µ1Ey > η (∀y ∈ Ω2), and (6)

µ1{x : µ2E
x ≤ α} ≥ 1− δ. (7)

Then η < α+ δ.

Proof. By Fubini’s theorem,

η <

∫
Ω2

µ1(Ey)dµ2(y) =

∫∫
Ω1×Ω2

E(x, y)dµ1(x)dµ2(y) =

∫
Ω1

µ2(Ex)dµ1(x)

≤ α · µ1{x : µ2(Ex) ≤ α}+ 1 · µ1{x : µ2(Ex) ≥ α} ≤ α · 1 + 1 · δ.
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Definition 3.2. For a real X and a string σ of length n,

(σ ↘ X)(n) =

{
σ(n) if n < |σ|,
X(n) otherwise,

and

(σ_X)(n) =

{
σ(n) if n < |σ|,
X(n− |σ|) otherwise.

Thinking of σ and X as functions we may write

σ ↘ X = σ ∪ (X � ω\|σ|)

and thinking in terms of concatenation we may write

σ_X = σX.

Lemma 3.3. Let Φ be a Turing reduction such that

λ(Φ−1JSDpK) = 1 (8)

and let ΦXσ = Φσ↘X . Then for any finite set Σ ⊆ 2<ω,

(∀ε > 0)(∀i0)(∃i > i0)(∀σ ∈ Σ)

P({X | ΦXσ (i) = 1}) ≤ p + ε.

Proof. First note that for all σ ∈ 2<ω, λ(Φ−1
σ JSDpK = 1 as well.

Suppose otherwise, and fix ε, i0 and Σ such that

(∀i > i0)(∃σ ∈ Σ) P(Φσ(i) = 1) > p + ε.

By density of the rationals in the reals we may assume ε is rational and hence
computable. Since there are infinitely many i but only finitely many σ, it follows
that there is some σ such that

(∃∞k > i0) P(Φσ(k) = 1) > p + ε (9)

and in fact
lim sup |{k < n : P(Φσ(k) = 1) > p + ε}| /n > 0.

Fix such a σ and let Ψ = Φσ. Let {`n}n∈ω be infinitely many values of k in (9)
listed in increasing order; note that L = {`n}n∈ω may be chosen as a computable
sequence.

For an as yet unspecified subsequence K = {kn}n∈ω, K ⊆ L, let

E = {(X,n) : ΨX(kn) = 1}. (10)

We obtain then also projections En = {X : ΨX(kn) = 1}, EX = {n : ΨX(kn) =
1}. By (9) we have for all n ∈ ω,

λEn > p + ε. (11)
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The fraction of events En that occur in N = {0, . . . , N − 1} for X is denoted

eXN =

∣∣EX ∩N ∣∣
N

By assumption (8),

λ
{
X : (∃K ⊆ L)(∃M)(∀N ≥M)

(
eXN ≤ p +

ε

2

)}
= 1.

Thus there is an M and a K (using that C is countable) such that

λ
{
X : eXM ≤ p +

ε

2

}
≥ λ

{
X : (∀N ≥M)eXN ≤ p +

ε

2

}
≥ 1− ε

3
. (12)

Let Ω1 be the unit interval [0, 1]. Let Ω2 = M = {0, 1, . . . ,M − 1}. Let µ1 = λ.
Let µ2 = card be the counting measure on the finite set M = {0, 1, . . . ,M − 1},
so that for a finite set A ⊂M , card(A) is the cardinality of A.4 Let η = p + ε,
α = p + ε/2, and δ = ε/3, and note that η > α + δ. By (11), (12) and Lemma
3.1, η < α+ δ, a contradiction.

4 Extraction and Hamming distance

Theorem 4.1. Let p < 1 be computable. Let p : ω → ω be any computable
function such that p(n) = ω∗(

√
n). Let Φ be a Turing reduction. There exists

an N ∈ C and an almost sure event A such that

A ∩ Interiorp,N (Φ−1JAK) = ∅

Proof. Let
A := W3R ⊂ MLR ⊂ CIM∩ IM∩(SDp ∪SDp).

We show

1. If λ(Φ−1JSDKp) = 1, or λ(Φ−1JSDpK) = 1, then

MLR∩Interiorp,N (Φ−1JCIMK) = ∅, or

MLR∩Interiorp,N (Φ−1JIMK) = ∅, respectively.

2. Otherwise; then

W3R∩Interior∗(Φ
−1JSDpK) = ∅

and
W3R∩Interior∗(Φ

−1JSDpK) = ∅
4In this case,

∫
µ1(Ey)dµ2(y) =

∫
µ1(En)dµ2(n) =

∫
λ(En)d card(n) =∑

n∈Ω2
λ(En) card({n}) =

∑M−1
n=0 λ(En) · 1.
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Proof of (2): If we are not in case (1) then λ{X | ΦX ∈ SDp} < 1, so by the 0-1
Law, λ{X | (∀Y =∗ X)(ΦY ∈ SDp)} = 0. This is (contained in) a Π0

3 null class,
so if X ∈W3R then (∃Y =∗ X)(ΦY 6∈ SDp) hence we are done.
Proof of (1): By Lemma 3.3,

(∃p < 1)(∀ε > 0)(∀n)(∀i)(∃i′ > i)(∀σ ∈ 2=n)

P({Z : Φσ↘Z(i′) = 1}) ≤ p + ε; (13)

Since Φ is total for almost all oracles, it is clear that i′ is a computable function
f(k, n) of ε = 1/k and n. Let g : ω → ω be the computable function with
limn→∞ g(n) =∞ given by g(s) = 2s. Let n0 = 0 and i0 = 0. Assuming s ≥ 0
and ns and is have been defined, let

is+1 = f(g(s), ns),

and let ns+1 be large enough that

(∀σ ∈ 2=ns) λ{Z | Φσ↘Z(is+1) ↑ @ns+1} ≤
1

2s
, (14)

lim*

s→∞

p(ns+1 − ns)√
ns+1 − ns

=∞, and

s∑
k=0

p(nk+1 − nk) ≤ p(ns+1).

Note that since i′ > i in (13), we have is+1 > is and hence R := {i0, i1, . . .} is
a computable infinite set. We now have

(∀s)(∀σ ∈ 2=ns) P({Z : Φσ↘Z(is+1) = 1}) ≤ p +
1

2s
(15)

so

P({Z : Φσ↘Z(is+1) ↓= 1@ns+1}) ≤ p +
1

2s
. (16)

Note [a, b) = b\a.
Let X ∈ MLR. We aim to define Y ∼p X such that ΦY 6∈ MLR. We will in

fact make Y ≤T X, so we define a reduction Ξ and let Y = ΞX . Since we are
defining Y by modifying bits of X, the use of Ξ will be the identity function:
ξX(n) = n.

Since n0 = 0, Y � n0 is the empty string. Suppose s ≥ 0 and Y�ns
has

already been defined. The set of “good” strings now is

G = {τ � Y�ns | Φτ�ns+1(is+1) = 0}.

Define the “cost” of τ to be the additional Hamming distance to X, i.e., d(τ) =
|(X + τ) ∩ [ns, ns+1)|.

Case 1. G 6= ∅. Then let Y�ns+1
be any τ0 ∈ G of length ns+1 and of minimal

cost, i.e., such that d(τ0) = min{d(τ) | τ ∈ G}. That is, let

Y�ns+1
∈ arg min

τ∈G
d(τ).

13



Case 2. Otherwise. Then make no further changes to X up to length ns+1,
i.e., let Y�ns+1 = Y�ns ↘ X�ns+1 .

This completes the definition of Ξ and hence of Y . It remains to show that
ΦY 6∈ MLR. For any string σ of length ns let

Eσs+1 =
{
Z ∈ {0, 1}[ns,ns+1) : ¬

(
Φσ↘Z(is+1) ↓= 0@ns+1

)}
=
{
Z : Φσ↘Z(is+1) ↓= 1@ns+1

}
∪
{
Z : Φσ↘Z(is+1) ↑ @ns+1

}
Since (14) and (16) hold for all strings of length ns, in particular they hold for
σ = ΞX � ns, so

(∀s) P(Eσs+1) ≤ p +
1

2s
+

1

2s
= p +

1

s
, hence lim sup

s→∞
P(EX�ns

s+1 ) ≤ p. (17)

Let
UX�ns
s = {Z ∈ {0, 1}[ns,ns+1) : B

[ns,ns+1)
p(ns+1−ns)(Z) ⊆ EX�ns

s+1 }.

Since
p(ns+1 − ns)√
ns+1 − ns

→∗ ∞.

we can apply Lemma 2.2 and there is h(s) with lim*
s→∞ h(s) = 0 and

P(UX�ns
s ) ≤ h(s)

that only depends on an upper bound for an s0 such that for all s ≥ s0,
P(Es+1) ≤ q (where p < q < 1 and q is just some fixed computable num-
ber). Since by (17) such an upper bound can be given that works for all X,
actually h(s) may be chosen to not depend on X. Let

Vs = {Z : Z ∈ UZ�ns
s },

then Vs is uniformly ∆0
1. To find the probability of Vs we note that for each of

the 2ns possible beginnings of Z, there are at most (h(s)·2ns+1−ns) continuations
of Z on [ns, ns+1) that make Z ∈ Vs; so we compute

P(Vs) = |{Z ∈ {0, 1}ns+1 : Z � [ns, ns+1) ∈ UZ�ns}|2−ns+1

≤ 2ns(h(s) · 2ns+1−ns)2−ns+1 = h(s)

so since lim*
s→∞ h(s) = 0, {Vs}s∈ω is a Kurtz randomness test. Let {ms}s∈ω be

a computable sequence such that
∑
s≥t h(ms) ≤ 2−t. Let Wt =

⋃
s≥t Vms . Then

P(Wt) ≤ 2−t and Wt is uniformly Σ0
1 and hence it is a Martin-Löf randomness

test. Since X ∈ MLR, X 6∈Wt for some t and hence X 6∈ Vms
for all but finitely

many s. So ΦY (ms) = 0 for all but finitely many s, hence ΦY 6∈ CIM.
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By construction, we have

|(X + Y ) ∩ [ns, ns+1)| ≤ p(ns+1 − ns)

for all but finitely many n. Therefore

|(X + Y ) ∩ [0, ns+1)| ≤
s∑

k=0

p(nk+1 − nk) ≤ p(ns+1)

so X ∼p,N Y where N = {ns : s ∈ ω}.

4.1 Main result

Lemma 4.2. Let p(n) = o( n
logn ) and let N ∈ C. If X ∈ MLR and X ∼p,N Y

then dimcp(Y ) = 1.

Proof. Suppose there are at most p(n) many bits changed to go from X � n to
Y � n, in positions a1, . . . , ap(n). (In case there are fewer than p(n) changed
bits, we can repeat ai representing the bit 0 which we may assume is changed.)
Let (Y � n)∗ be a shortest description of Y � n. From the code

0|K(Y �n)|_1_K(Y � n)_(Y � n)∗_a1 · · · ap(n)

we can effectively recover X � n. Thus

n− c1 ≤ K(X � n) ≤ 2 log[K(Y � n)] + 1 +K(Y � n) + p(n) log n+ c2

≤ 2 log[n+ 2 log n+ c3] + 1 +K(Y � n) + p(n) log n+ c2.

Hence
n ≤+ 3 log n+K(Y � n) + p(n) log n, and

n− (p(n) + 3) log n ≤+ K(Y � n).

Theorem 4.3. For each Turing reduction procedure Φ there is a set Y with
dimcp(Y ) = 1 such that ΦY is not stochastically bi-immune.

Proof. Let p(n) = n2/3, so that p(n) = o(n/ log n) and p(n) = ω∗(
√
n). By

the proof of Theorem 4.1 and since the sequence of numbers ns is computable,
for each weakly 3-random set X there is a set Y ∼p,N X (for some N ∈ C)
such that ΦY is not both co-immune and in SD1/2, in particular ΦY 6∈ SBI. By
Lemma 4.2, each such Y has complex packing dimension 1.
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